This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000730 M4347 N1821 #37 Feb 01 2022 01:11:48 %S A000730 1,-7,14,7,-49,21,35,41,-49,-133,98,-21,126,112,-176,-105,-126,140, %T A000730 -35,147,259,98,-420,-224,238,-455,273,-14,322,406,-35,-7,-637,-196, %U A000730 245,-181,-574,462,147,924,217,-329,-140,-7,-371,-777 %N A000730 Expansion of Product_{n>=1} (1 - x^n)^7. %D A000730 Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. %D A000730 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000730 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000730 Seiichi Manyama, <a href="/A000730/b000730.txt">Table of n, a(n) for n = 0..10000</a> %H A000730 M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071) %H A000730 M. Newman, <a href="/A000727/a000727.pdf">A table of the coefficients of the powers of eta(tau)</a>, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy] %H A000730 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a> %F A000730 a(0) = 1, a(n) = -(7/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 26 2017 %F A000730 G.f.: exp(-7*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018 %t A000730 CoefficientList[QPochhammer[x]^7 + O[x]^50, x] (* _Jean-François Alcover_, Feb 10 2016 *) %K A000730 sign %O A000730 0,2 %A A000730 _N. J. A. Sloane_