This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000734 #44 Jun 12 2022 11:49:24 %S A000734 1,2,5,15,49,177,715,3255,16689,95777,609875,4270695,32624329, %T A000734 269995377,2406363835,22979029335,234062319969,2533147494977, %U A000734 29027730898595,351112918079175,4470508510495609,59766296291090577 %N A000734 Boustrophedon transform of 1,1,2,4,8,16,32,... %C A000734 Binomial transform of A062272. - _Paul Barry_, Jan 21 2005 %H A000734 Reinhard Zumkeller, <a href="/A000734/b000734.txt">Table of n, a(n) for n = 0..400</a> %H A000734 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a> %H A000734 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A000734 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %H A000734 Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>. %H A000734 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A000734 E.g.f.: (1 + exp(2*x))*(sec(x) + tan(x))/2. - _Paul Barry_, Jan 21 2005 %F A000734 a(n) ~ n! * (1 + exp(Pi)) * (2/Pi)^(n+1). - _Vaclav Kotesovec_, Oct 07 2013 %t A000734 CoefficientList[Series[(1+E^(2*x))*(Sec[x]+Tan[x])/2, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 07 2013 *) %t A000734 t[n_, 0] := If[n == 0, 1, 2^(n-1)]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n - 1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *) %o A000734 (Sage) # Algorithm of L. Seidel (1877) %o A000734 def A000734_list(n) : %o A000734 A = {-1:0, 0:1}; R = [] %o A000734 k = 0; e = 1; Bm = 1 %o A000734 for i in range(n) : %o A000734 Am = Bm %o A000734 A[k + e] = 0 %o A000734 e = -e %o A000734 for j in (0..i) : %o A000734 Am += A[k] %o A000734 A[k] = Am %o A000734 k += e %o A000734 Bm += Bm %o A000734 R.append(A[e*i//2]/2) %o A000734 return R %o A000734 A000734_list(22) # _Peter Luschny_, Jun 02 2012 %o A000734 (Haskell) %o A000734 a000734 n = sum $ zipWith (*) (a109449_row n) (1 : a000079_list) %o A000734 -- _Reinhard Zumkeller_, Nov 04 2013 %o A000734 (Python) %o A000734 from itertools import count, accumulate, islice %o A000734 def A000734_gen(): # generator of terms %o A000734 yield 1 %o A000734 blist, m = (1,), 1 %o A000734 while True: %o A000734 yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1] %o A000734 m *= 2 %o A000734 A000734_list = list(islice(A000734_gen(),40)) # _Chai Wah Wu_, Jun 12 2022 %Y A000734 Cf. A109449, A000079, A000752. %K A000734 nonn %O A000734 0,2 %A A000734 _N. J. A. Sloane_, _Simon Plouffe_