cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000736 Boustrophedon transform of Catalan numbers 1, 1, 1, 2, 5, 14, ...

This page as a plain text file.
%I A000736 #47 Jun 12 2022 11:49:03
%S A000736 1,2,4,10,32,120,513,2455,13040,76440,492231,3465163,26530503,
%T A000736 219754535,1959181266,18710532565,190588702776,2062664376064,
%U A000736 23636408157551,285900639990875,3640199365715769,48665876423760247
%N A000736 Boustrophedon transform of Catalan numbers 1, 1, 1, 2, 5, 14, ...
%H A000736 Reinhard Zumkeller, <a href="/A000736/b000736.txt">Table of n, a(n) for n = 0..400</a>
%H A000736 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>
%H A000736 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).
%H A000736 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A000736 Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>
%H A000736 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%F A000736 E.g.f.: (sec(x) + tan(x))*(integral(exp(2*x)*(BesselI(0,2*x)-BesselI(1,2*x)),x)+1). - _Sergei N. Gladkovskii_, Oct 30 2014
%F A000736 a(n) ~ n! * (6/Pi+2*exp(Pi)*((2-1/Pi)*BesselI(0,Pi)-2*BesselI(1,Pi))) * 2^n / Pi^n. - _Vaclav Kotesovec_, Oct 30 2014
%p A000736 egf := (sec(x/2)+tan(x/2))*(exp(x)*((x-1/2)*BesselI(0,x)-x*BesselI(1,x))+3/2);
%p A000736 s := n -> 2^n*n!*coeff(series(egf,x,n+2),x,n); seq(s(n), n=0..22); # _Peter Luschny_, Oct 30 2014, after _Sergei N. Gladkovskii_
%t A000736 CoefficientList[Series[1/2*(3 + E^(2*x)*((4*x-1)*BesselI[0, 2*x] - 4*x*BesselI[1, 2*x]))*(Sec[x] + Tan[x]), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Oct 30 2014, after _Peter Luschny_ *)
%t A000736 t[n_, 0] := If[n == 0, 1, CatalanNumber[n - 1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *)
%o A000736 (Haskell)
%o A000736 a000736 n = sum $ zipWith (*) (a109449_row n) (1 : a000108_list)
%o A000736 -- _Reinhard Zumkeller_, Nov 05 2013
%o A000736 (Python)
%o A000736 from itertools import accumulate, count, islice
%o A000736 def A000736_gen(): # generator of terms
%o A000736     yield 1
%o A000736     blist, c = (1,), 1
%o A000736     for i in count(0):
%o A000736         yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
%o A000736         c = c*(4*i+2)//(i+2)
%o A000736 A000736_list = list(islice(A000736_gen(),40)) # _Chai Wah Wu_, Jun 12 2022
%Y A000736 Cf. A000108, A000753, A109449.
%K A000736 nonn
%O A000736 0,2
%A A000736 _N. J. A. Sloane_, _Simon Plouffe_