This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000737 #50 Jun 12 2022 12:00:59 %S A000737 1,3,8,21,60,197,756,3367,17136,98153,624804,4375283,33424512, %T A000737 276622829,2465449252,23543304919,239810132288,2595353815825, %U A000737 29740563986500,359735190398875,4580290700420064,61233976084442741 %N A000737 Boustrophedon transform of natural numbers, cf. A000027. %H A000737 Reinhard Zumkeller, <a href="/A000737/b000737.txt">Table of n, a(n) for n = 0..400</a> %H A000737 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a> %H A000737 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A000737 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A000737 Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a> %H A000737 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A000737 E.g.f.: (1 + x)*(tan x + sec x)*exp(x). %F A000737 a(n) ~ n! * (Pi + 2)*exp(Pi/2)*2^(n+1)/Pi^(n+1). - _Vaclav Kotesovec_, Oct 02 2013 %t A000737 CoefficientList[Series[(1+x)*(Tan[x]+1/Cos[x])* E^x, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 02 2013 *) %t A000737 t[n_, 0] := n + 1; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *) %o A000737 (Sage) # Algorithm of L. Seidel (1877) %o A000737 def A000737_list(n) : %o A000737 R = []; A = {-1:0, 0:0} %o A000737 k = 0; e = 1 %o A000737 for i in range(n) : %o A000737 Am = i+1 %o A000737 A[k + e] = 0 %o A000737 e = -e %o A000737 for j in (0..i) : %o A000737 Am += A[k] %o A000737 A[k] = Am %o A000737 k += e %o A000737 # To trace the algorithm remove the comment sign. %o A000737 # print([A[z] for z in (-i//2..i//2)]) %o A000737 R.append(A[e*i//2]) %o A000737 return R %o A000737 A000737_list(10) # _Peter Luschny_, Jun 02 2012 %o A000737 (Haskell) %o A000737 a000737 n = sum $ zipWith (*) (a109449_row n) [1..] %o A000737 -- _Reinhard Zumkeller_, Nov 05 2013 %o A000737 (Python) %o A000737 from itertools import count, accumulate, islice %o A000737 def A000737_gen(): # generator of terms %o A000737 blist = tuple() %o A000737 for i in count(1): %o A000737 yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1] %o A000737 A000737_list = list(islice(A000737_gen(),40)) # _Chai Wah Wu_, Jun 12 2022 %Y A000737 Cf. A231179. %K A000737 nonn %O A000737 0,2 %A A000737 _N. J. A. Sloane_