This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000740 M2582 N1021 #169 Jul 01 2025 08:53:52 %S A000740 1,1,3,6,15,27,63,120,252,495,1023,2010,4095,8127,16365,32640,65535, %T A000740 130788,262143,523770,1048509,2096127,4194303,8386440,16777200, %U A000740 33550335,67108608,134209530,268435455,536854005,1073741823,2147450880 %N A000740 Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle. %C A000740 Also number of compositions of n into relatively prime parts (that is, the gcd of all the parts is 1). Also number of subsets of {1,2,..,n} containing n and consisting of relatively prime numbers. - _Vladeta Jovovic_, Aug 13 2003 %C A000740 Also number of perfect parity patterns that have exactly n columns (see A118141). - _Don Knuth_, May 11 2006 %C A000740 a(n) is odd if and only if n is squarefree (Tim Keller). - _Emeric Deutsch_, Apr 27 2007 %C A000740 a(n) is a multiple of 3 for all n>=3 (see Problem 11161 link). - _Emeric Deutsch_, Aug 13 2008 %C A000740 Row sums of triangle A143424. - _Gary W. Adamson_, Aug 14 2008 %C A000740 a(n) is the number of monic irreducible polynomials with nonzero constant coefficient in GF(2)[x] of degree n. - _Michel Marcus_, Oct 30 2016 %C A000740 a(n) is the number of aperiodic compositions of n, the number of compositions of n with relatively prime parts, and the number of compositions of n with relatively prime run-lengths. - _Gus Wiseman_, Dec 21 2017 %D A000740 H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag; contribution by A. Douady, p. 165. %D A000740 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000740 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000740 Seiichi Manyama, <a href="/A000740/b000740.txt">Table of n, a(n) for n = 1..3322</a> (terms 1..300 from T. D. Noe) %H A000740 Hunki Baek, Sejeong Bang, Dongseok Kim, and Jaeun Lee, <a href="http://arxiv.org/abs/1412.2426">A bijection between aperiodic palindromes and connected circulant graphs</a>, arXiv:1412.2426 [math.CO], 2014. See Table 2. %H A000740 Donald Knuth, Robin Chapman and Reiner Martin, <a href="http://www.jstor.org/stable/27642574">Problem 11243, Perfect Parity Patterns</a>, Am. Math. Monthly 115 (7) (2008) p 668, function c(n). %H A000740 Emeric Deutsch and Lafayette College Problem Group, <a href="http://www.jstor.org/stable/27642212">Problem 11161: Compositions without Common Factors</a>, American Mathematical Monthly, vol. 114, No. 4, 2007, p. 363. %H A000740 H. W. Gould, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/2-4/gould.pdf">Binomial coefficients, the bracket function and compositions with relatively prime summands</a>, Fib. Quart. 2(4) (1964), 241-260. %H A000740 J. E. Iglesias, <a href="https://doi.org/10.1524/zkri.1981.155.1-2.121">A formula for the number of closest packings of equal spheres having a given repeat period</a>, Z. Krist. 155 (1981) 121-127, Table 2. %H A000740 Wolfdieter Lang, <a href="https://arxiv.org/abs/2307.10645">Cantor's List of Real Algebraic Numbers of Heights 1 to 7</a>, arXiv:2307.10645 [math.NT], 2023. %H A000740 Nicolae Mihalache and Francois Vigneron, <a href="https://arxiv.org/abs/2506.17662">Factorization of the quadratic Misiurewicz-Thurston polynomials</a>, arXiv:2506.17662 [math.DS], 2025. See p. 8. %H A000740 Robert Munafo, <a href="http://www.mrob.com/pub/muency/enumerationoffeatures.html">Enumeration of Period-N Mu-Atoms</a> %H A000740 Jeffrey Shallit and N. J. A. Sloane, <a href="/A002949/a002949.pdf">Correspondence 1974-1975</a> %H A000740 François Vigneron and Nicolae Mihalache, <a href="https://arxiv.org/abs/2402.06083">How to split a tera-polynomial</a>, arXiv:2402.06083 [math.NA], 2024. %H A000740 <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a> %F A000740 a(n) = Sum_{d|n} mu(n/d)*2^(d-1), Mobius transform of A011782. Furthermore, Sum_{d|n} a(d) = 2^(n-1). %F A000740 a(n) = A027375(n)/2 = A038199(n)/2. %F A000740 a(n) = Sum_{k=0..n} A051168(n,k)*k. - _Max Alekseyev_, Apr 09 2013 %F A000740 Recurrence relation: a(n) = 2^(n-1) - Sum_{d|n,d>1} a(n/d). (Lafayette College Problem Group; see the Maple program and Iglesias eq (6)). - _Emeric Deutsch_, Apr 27 2007 %F A000740 G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - _Ilya Gutkovskiy_, Oct 24 2018 %F A000740 G.f. satisfies Sum_{n>=1} A( (x/(1 + 2*x))^n ) = x. - _Paul D. Hanna_, Apr 02 2025 %e A000740 For n=4, there are 6 compositions of n into coprime parts: <3,1>, <2,1,1>, <1,3>, <1,2,1>, <1,1,2>, and <1,1,1,1>. %e A000740 From _Gus Wiseman_, Dec 19 2017: (Start) %e A000740 The a(6) = 27 aperiodic compositions are: %e A000740 (11112), (11121), (11211), (12111), (21111), %e A000740 (1113), (1122), (1131), (1221), (1311), (2112), (2211), (3111), %e A000740 (114), (123), (132), (141), (213), (231), (312), (321), (411), %e A000740 (15), (24), (42), (51), %e A000740 (6). %e A000740 The a(6) = 27 compositions into relatively prime parts are: %e A000740 (111111), %e A000740 (11112), (11121), (11211), (12111), (21111), %e A000740 (1113), (1122), (1131), (1212), (1221), (1311), (2112), (2121), (2211), (3111), %e A000740 (114), (123), (132), (141), (213), (231), (312), (321), (411), %e A000740 (15), (51). %e A000740 The a(6) = 27 compositions with relatively prime run-lengths are: %e A000740 (11112), (11121), (11211), (12111), (21111), %e A000740 (1113), (1131), (1212), (1221), (1311), (2112), (2121), (3111), %e A000740 (114), (123), (132), (141), (213), (231), (312), (321), (411), %e A000740 (15), (24), (42), (51), %e A000740 (6). %e A000740 (End) %p A000740 with(numtheory): a[1]:=1: a[2]:=1: for n from 3 to 32 do div:=divisors(n): a[n]:=2^(n-1)-sum(a[n/div[j]],j=2..tau(n)) od: seq(a[n],n=1..32); # _Emeric Deutsch_, Apr 27 2007 %p A000740 with(numtheory); A000740:=n-> add(mobius(n/d)*2^(d-1), d in divisors(n)); # _N. J. A. Sloane_, Oct 18 2012 %t A000740 a[n_] := Sum[ MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 32}] (* _Jean-François Alcover_, Feb 03 2012, after PARI *) %o A000740 (PARI) a(n) = sumdiv(n,d,moebius(n/d)*2^(d-1)) %o A000740 (Python) %o A000740 from sympy import mobius, divisors %o A000740 def a(n): return sum([mobius(n // d) * 2**(d - 1) for d in divisors(n)]) %o A000740 [a(n) for n in range(1, 101)] # _Indranil Ghosh_, Jun 28 2017 %Y A000740 Cf. A000837, A003239, A008683, A008965, A022553, A034738, A035928, A038199, A051168, A054525, A056267, A059966, A143424, A167606, A178472, A216954, A228369, A294859, A296302. %Y A000740 Equals A027375/2. %Y A000740 See A056278 for a variant. %Y A000740 First differences of A085945. %Y A000740 Column k=2 of A143325. %Y A000740 Row sums of A101391. %K A000740 nonn,nice,easy %O A000740 1,3 %A A000740 _N. J. A. Sloane_ %E A000740 Connection with Mandelbrot set discovered by _Warren D. Smith_ and proved by _Robert Munafo_, Feb 06 2000 %E A000740 Ambiguous term a(0) removed by _Max Alekseyev_, Jan 02 2012