cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000741 Number of compositions of n into 3 ordered relatively prime parts.

This page as a plain text file.
%I A000741 M2531 N0999 #52 Jan 05 2025 19:51:31
%S A000741 0,0,1,3,6,9,15,18,27,30,45,42,66,63,84,84,120,99,153,132,174,165,231,
%T A000741 180,270,234,297,270,378,276,435,360,450,408,540,414,630,513,636,552,
%U A000741 780,558,861,690,828,759,1035,744,1113,870,1104,972,1326,945,1380,1116,1386,1218
%N A000741 Number of compositions of n into 3 ordered relatively prime parts.
%D A000741 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000741 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000741 Alois P. Heinz, <a href="/A000741/b000741.txt">Table of n, a(n) for n = 1..10000</a>
%H A000741 H. W. Gould, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/2-4/gould.pdf">Binomial coefficients, the bracket function and compositions with relatively prime summands</a>, Fib. Quart. 2(4) (1964), 241-260.
%H A000741 C. Kimberling, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Kimberling/kimberling24.html">Matrix Transformations of Integer Sequences</a>, J. Integer Seqs., Vol. 6, 2003.
%H A000741 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A000741 Moebius transform of A000217(n-2).
%F A000741 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = (1 - 3*x + 3*x^2)/(1 - x)^3. - _Ilya Gutkovskiy_, Apr 26 2017
%e A000741 From _Gus Wiseman_, Oct 14 2020: (Start)
%e A000741 The a(3) = 1 through a(8) = 18 triples:
%e A000741   (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
%e A000741            (1,2,1)  (1,2,2)  (1,2,3)  (1,2,4)  (1,2,5)
%e A000741            (2,1,1)  (1,3,1)  (1,3,2)  (1,3,3)  (1,3,4)
%e A000741                     (2,1,2)  (1,4,1)  (1,4,2)  (1,4,3)
%e A000741                     (2,2,1)  (2,1,3)  (1,5,1)  (1,5,2)
%e A000741                     (3,1,1)  (2,3,1)  (2,1,4)  (1,6,1)
%e A000741                              (3,1,2)  (2,2,3)  (2,1,5)
%e A000741                              (3,2,1)  (2,3,2)  (2,3,3)
%e A000741                              (4,1,1)  (2,4,1)  (2,5,1)
%e A000741                                       (3,1,3)  (3,1,4)
%e A000741                                       (3,2,2)  (3,2,3)
%e A000741                                       (3,3,1)  (3,3,2)
%e A000741                                       (4,1,2)  (3,4,1)
%e A000741                                       (4,2,1)  (4,1,3)
%e A000741                                       (5,1,1)  (4,3,1)
%e A000741                                                (5,1,2)
%e A000741                                                (5,2,1)
%e A000741                                                (6,1,1)
%e A000741 (End)
%p A000741 with(numtheory):
%p A000741 mobtr:= proc(p)
%p A000741           proc(n) option remember;
%p A000741             add(mobius(n/d)*p(d), d=divisors(n))
%p A000741           end
%p A000741         end:
%p A000741 A000217:= n-> n*(n+1)/2:
%p A000741 a:= mobtr(n-> A000217(n-2)):
%p A000741 seq(a(n), n=1..58);  # _Alois P. Heinz_, Feb 08 2011
%t A000741 mobtr[p_] := Module[{f}, f[n_] := f[n] = Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; f]; A000217[n_] := n*(n+1)/2; a = mobtr[A000217[#-2]&]; Table[a[n], {n, 1, 58}] (* _Jean-François Alcover_, Mar 12 2014, after _Alois P. Heinz_ *)
%t A000741 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],GCD@@#==1&]],{n,0,30}] (* _Gus Wiseman_, Oct 14 2020 *)
%Y A000741 A000010 is the length-2 version.
%Y A000741 A000217(n-2) does not require relative primality.
%Y A000741 A000740 counts these compositions of any length.
%Y A000741 A000742 is the length-4 version.
%Y A000741 A000837 counts relatively prime partitions.
%Y A000741 A023023 is the unordered version.
%Y A000741 A101271 is the strict case.
%Y A000741 A101391 has this as column k = 3.
%Y A000741 A284825*6 is the pairwise non-coprime case.
%Y A000741 A291166 intersected with A014311 ranks these compositions.
%Y A000741 A337461 is the pairwise coprime instead of relatively prime version.
%Y A000741 A337603 counts length-3 compositions whose distinct parts are pairwise coprime.
%Y A000741 A337604 is the pairwise non-coprime instead of relatively prime version.
%Y A000741 Cf. A001399, A007997, A023022, A078374, A337450, A337451, A337602.
%K A000741 nonn,easy
%O A000741 1,4
%A A000741 _N. J. A. Sloane_
%E A000741 Edited by _Alois P. Heinz_, Feb 08 2011