cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000750 Expansion of bracket function.

This page as a plain text file.
%I A000750 M3851 N1576 #34 Jan 05 2025 19:51:31
%S A000750 1,-5,15,-35,70,-125,200,-275,275,0,-1000,3625,-9500,21250,-42500,
%T A000750 76875,-124375,171875,-171875,0,621875,-2250000,5890625,-13171875,
%U A000750 26343750,-47656250,77109375,-106562500,106562500,0
%N A000750 Expansion of bracket function.
%C A000750 It appears that the (unsigned) sequence is identical to its 5th-order absolute difference. - _John W. Layman_, Sep 23 2003
%D A000750 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000750 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000750 Seiichi Manyama, <a href="/A000750/b000750.txt">Table of n, a(n) for n = 0..3000</a>
%H A000750 H. W. Gould, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/2-4/gould.pdf">Binomial coefficients, the bracket function and compositions with relatively prime summands</a>, Fib. Quart. 2(4) (1964), 241-260.
%H A000750 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-5, -10, -10, -5).
%F A000750 G.f.: 1/((1+x)^5-x^5).
%F A000750 a(n) = (-1)^n * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+4,5*k+4). - _Seiichi Manyama_, Mar 21 2019
%t A000750 LinearRecurrence[{-5, -10, -10, -5}, {1, -5, 15, -35}, 30] (* _Jean-François Alcover_, Feb 11 2016 *)
%o A000750 (PARI) Vec(1/((1+x)^5-x^5) + O(x^40)) \\ _Michel Marcus_, Feb 11 2016
%o A000750 (PARI) {a(n) = (-1)^n*sum(k=0, n\5, (-1)^k*binomial(n+4, 5*k+4))} \\ _Seiichi Manyama_, Mar 21 2019
%Y A000750 Column 5 of A307047.
%Y A000750 Cf. A000748, A000749, A001659, A006090, A049016.
%K A000750 sign,easy
%O A000750 0,2
%A A000750 _N. J. A. Sloane_