This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000751 #34 Jun 12 2022 12:01:07 %S A000751 1,2,5,14,42,143,555,2485,12649,72463,461207,3229622,24671899, %T A000751 204185616,1819837153,17378165240,177012514388,1915724368181, %U A000751 21952583954117,265533531724484,3380877926676504,45199008472762756 %N A000751 Boustrophedon transform of partition numbers. %H A000751 John Cerkan, <a href="/A000751/b000751.txt">Table of n, a(n) for n = 0..482</a> %H A000751 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a> %H A000751 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A000751 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A000751 Wikipedia, <a href="http://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon_transform</a> %H A000751 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A000751 a(n) = Sum_{k=0..n} A109449(n,k)*A000041(k). - _Reinhard Zumkeller_, Nov 03 2013 %e A000751 The array begins: %e A000751 1 %e A000751 1 -> 2 %e A000751 5 <- 4 <- 2 %e A000751 3 -> 8 -> 12 -> 14 %e A000751 42 <- 39 <- 31 <- 19 <- 5 %e A000751 - _John Cerkan_, Jan 26 2017 %t A000751 t[n_, 0] := PartitionsP[n]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *) %o A000751 (Haskell) %o A000751 a000751 n = sum $ zipWith (*) (a109449_row n) a000041_list %o A000751 -- _Reinhard Zumkeller_, Nov 03 2013 %o A000751 (Python) %o A000751 from itertools import accumulate, count, islice %o A000751 from sympy import npartitions %o A000751 def A000751_gen(): # generator of terms %o A000751 blist = tuple() %o A000751 for i in count(0): %o A000751 yield (blist := tuple(accumulate(reversed(blist),initial=npartitions(i))))[-1] %o A000751 A000751_list = list(islice(A000751_gen(),40)) # _Chai Wah Wu_, Jun 12 2022 %Y A000751 Cf. A000733, A230957. %K A000751 nonn %O A000751 0,2 %A A000751 _N. J. A. Sloane_