This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000776 #37 Apr 18 2017 07:02:29 %S A000776 1,3,8,28,124,668,4248,31176,259488,2416032,24886080,281004480, %T A000776 3451887360,45832538880,654109585920,9986000371200,162391354675200, %U A000776 2802498609254400,51156349822771200,984775394044108800,19938798081699840000,423580563732049920000 %N A000776 a(n) = n! * (1 + 2*Sum_{k=1..n} 1/k). %C A000776 a(n-1) equals -1 times the coefficient of x of the characteristic polynomial of the n X n matrix whose (i,j)-entry is equal to i if i=j and is equal to 1 otherwise. - _John M. Campbell_, May 23 2011 %H A000776 Nathaniel Johnston, <a href="/A000776/b000776.txt">Table of n, a(n) for n = 0..250</a> %H A000776 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=140">Encyclopedia of Combinatorial Structures 140</a> %H A000776 J. R. Stembridge, <a href="http://dx.doi.org/10.1090/S0002-9947-97-01805-9">Some combinatorial aspects of reduced words in finite Coxeter groups</a>, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285-1332. %F A000776 E.g.f. (with offset 1): log(1-x)*(log(1-x)-1). - _Vladeta Jovovic_, Nov 19 2009 %F A000776 a(0)=1, a(n+1) = (n+1)*a(n) + 2*n!, n > 0. - _Sean A. Irvine_, Jun 14 2011 %p A000776 a := proc(n) option remember: if(n=0)then return 1: fi: return n*a(n-1)+2*(n-1)!: end: seq(a(n),n=0..21); # _Nathaniel Johnston_, Jun 14 2011 %t A000776 Table[-Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] (((#1)) - 1) + 1 &, {n, n}], x], x], {n, 1, 10}] (* _John M. Campbell_, May 23 2011 *) %t A000776 Table[n! (1 + 2 HarmonicNumber[n]), {n, 0, 30}] (* _Jean-François Alcover_, Feb 11 2016 *) %Y A000776 Cf. A000774. %K A000776 nonn,easy %O A000776 0,2 %A A000776 _N. J. A. Sloane_ %E A000776 Incorrect formula deleted by _Mark van Hoeij_, Nov 11 2009 %E A000776 Offset corrected by _Gary Detlefs_, Jul 13 2010