cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000784 Number of symmetrical planar partitions of n (planar partitions (A000219) that when regarded as 3-D objects have just one symmetry plane).

Original entry on oeis.org

0, 1, 2, 2, 4, 6, 6, 11, 16, 20, 28, 41, 51, 70, 93, 122, 158, 211, 266, 350, 450, 577, 730, 948, 1186, 1510, 1901, 2408, 2999, 3790, 4703, 5898, 7310, 9111, 11231, 13979, 17168, 21229, 26036, 32095, 39188, 48155, 58657, 71798, 87262, 106472, 129014
Offset: 1

Views

Author

Keywords

References

  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 150;
    a219[0] = 1;
    a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
    s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1);
    A005987 = CoefficientList[s, x];
    a048140[n_] := (a219[n] + A005987[[n + 1]])/2;
    A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]];
    a[1] = 0;
    a[n_] := -A048141[[n]] + 2 a048140[n] - a219[n];
    a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)

Extensions

More terms from Wouter Meeussen