A000785 Number of asymmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have no symmetry.
0, 0, 0, 1, 2, 5, 11, 21, 39, 73, 129, 226, 388, 659, 1100, 1821, 2976, 4828, 7754, 12370, 19574, 30789, 48097, 74725, 115410, 177366, 271159, 412665, 625098, 942932, 1416362, 2119282, 3158840, 4691431, 6942882, 10240503, 15054705
Offset: 1
References
- P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..150
- P. A. MacMahon, Combinatory analysis.
Programs
-
Mathematica
nmax = 150; a219[0] = 1; a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n; s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1); A005987 = CoefficientList[s, x]; a048140[n_] := (a219[n] + A005987[[n + 1]])/2; A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]]; A048142 = Cases[Import["https://oeis.org/A048142/b048142.txt", "Table"], {, }][[All, 2]]; a[1] = 0; a[n_] := (A048141[[n]] - 3 a048140[n] + 2 a219[n] - A048142[[n]])/3; a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)
Extensions
More terms from Wouter Meeussen