cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000786 Number of inequivalent planar partitions of n, when considering them as 3D objects.

This page as a plain text file.
%I A000786 M1020 N0383 #38 Feb 16 2025 08:32:21
%S A000786 1,1,1,2,4,6,11,19,33,55,95,158,267,442,731,1193,1947,3137,5039,8026,
%T A000786 12726,20024,31373,48835,75673,116606,178889,273061,415086,628115,
%U A000786 946723,1421082,2125207,3166152,4700564,6954151,10254486,15071903
%N A000786 Number of inequivalent planar partitions of n, when considering them as 3D objects.
%C A000786 Partitions that are the same when regarded as 3-D objects are counted only once. - _Wouter Meeussen_, May 2006
%D A000786 P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
%D A000786 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000786 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000786 Jean-François Alcover, <a href="/A000786/b000786.txt">Table of n, a(n) for n = 0..150</a>
%H A000786 P. A. MacMahon, <a href="http://www.hti.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABU9009">Combinatory analysis</a>.
%H A000786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MacdonaldsPlanePartitionConjecture.html">Macdonald's Plane Partition Conjecture</a>.
%H A000786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PlanePartition.html">Plane Partition</a>.
%F A000786 Equals A000784 + A000785 + A048141 + A048142.
%F A000786 Equals (A048141 + 3*A048140 - A000219 + 2*A048142)/3. - _Wouter Meeussen_, May 2006
%e A000786 From _M. F. Hasler_, Oct 01 2018: (Start)
%e A000786 For n = 2, all three plane partitions  [2], [1 1] and [1; 1] (where ";" means next row) correspond to a 1 X 1 X 2 rectangular cuboid, therefore a(2) = 1.
%e A000786 For n = 3, we have [3] ~ [1 1 1] ~ [1; 1; 1] all corresponding to a 1 X 1 X 3 rectangular cuboid or tower of height 3, and [2 1] ~ [2; 1] ~ [1 1; 1] correspond to an L-shaped object, therefore a(3) = 2.
%e A000786 For n = 4, [4] ~ [1 1 1 1] ~ [1; 1; 1; 1] correspond to the 4-tower; [3 1] ~ [3; 1] ~ [2 1 1] ~ [2; 1; 1] ~ [1 1 1; 1] ~ [1 1; 1; 1] all correspond to the same L-shaped object, [2 2] ~ [2; 2] ~ [1 1; 1 1] represent a "flat" square, and it remains [2, 1; 1], so a(4) = 4.
%e A000786 For n = 5, we again have the tower [5] ~ [1 1 1 1 1] ~ [1; 1; 1; 1; 1], a "narrow L" or 4-tower with one "foot" [4 1] ~ [4; 1] ~ [2 1 1 1] ~ [2; 1; 1; 1] ~ [1 1 1 1; 1] ~ [1 1; 1; 1; 1], a symmetric L-shape [3 1 1] ~ [3; 1; 1] ~ [1 1 1; 1; 1], a 3-tower with 2 feet [3 1; 1] ~ [2 1; 1; 1] ~ [2 1 1; 1], a flat 2+3 shape [3 2] ~ [3; 2] ~ [2 2 1] ~ [2; 2; 1] ~ [1 1 1; 1 1] ~ [1 1; 1 1; 1] and a 2X2 square with a cube on top, [2 1;1 1] ~ [2 2; 1] ~ [2 1; 2]. This yields a(5) = 6 classes. (End)
%t A000786 nmax = 150;
%t A000786 a219[0] = 1;
%t A000786 a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
%t A000786 s = Product[1/(1 - x^(2i - 1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[( nmax+1)/2]}] + O[x]^(nmax+1);
%t A000786 A005987 = CoefficientList[s, x];
%t A000786 a048140[n_] := (a219[n] + A005987[[n+1]])/2;
%t A000786 A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {_, _}][[All, 2]];
%t A000786 A048142 = Cases[Import["https://oeis.org/A048142/b048142.txt", "Table"], {_, _}][[All, 2]];
%t A000786 a[0] = 1;
%t A000786 a[n_] := (A048141[[n]] + 3 a048140[n] - a219[n] + 2 A048142[[n]])/3;
%t A000786 a /@ Range[0, nmax] (* _Jean-François Alcover_, Dec 28 2019 *)
%Y A000786 Cf. A000784, A000785, A000219, A005987, A048142, A051056-A051061, A096419.
%K A000786 nonn,easy,nice
%O A000786 0,4
%A A000786 _N. J. A. Sloane_
%E A000786 More terms from _Wouter Meeussen_, 1999
%E A000786 Name & links edited and a(0) = 1 added by _M. F. Hasler_, Sep 30 2018