cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000797 Numbers that are not the sum of 4 tetrahedral numbers.

Original entry on oeis.org

17, 27, 33, 52, 73, 82, 83, 103, 107, 137, 153, 162, 217, 219, 227, 237, 247, 258, 268, 271, 282, 283, 302, 303, 313, 358, 383, 432, 437, 443, 447, 502, 548, 557, 558, 647, 662, 667, 709, 713, 718, 722, 842, 863, 898, 953, 1007, 1117, 1118
Offset: 1

Views

Author

Keywords

Comments

It is an open problem of long standing ("Pollock's Conjecture") to show that this sequence is finite.
More precisely, Salzer and Levine conjecture that every number is the sum of at most 5 tetrahedral numbers and in fact that there are exactly 241 numbers (the terms of this sequence) that require 5 tetrahedral numbers, the largest of which is 343867.

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 22.
  • S. S. Skiena, The Algorithm Design Manual, Springer-Verlag, 1998, pp. 43-45 and 135-136.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A102795, A102796, A102797, A104246, A102800 (complement).

Extensions

Entry revised Feb 25 2005