This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000901 M4446 N1881 #31 Jan 10 2018 16:05:06 %S A000901 0,0,7,74,882,11144,159652,2571960,46406392,928734944,20436096048, %T A000901 490489794464,12752891909920,357081983435904,10712466529388608, %U A000901 342798976818878336,11655165558112403328,419585962575107694080 %N A000901 Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details). %D A000901 L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. %D A000901 R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). %D A000901 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000901 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000901 L. C. Larson, <a href="/A000900/a000900_1.pdf">The number of essentially different nonattacking rook arrangements</a>, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only] %H A000901 E. Lucas, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k29021h">Théorie des Nombres</a>, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222. %H A000901 E. Lucas, <a href="/A000899/a000899.pdf">Théorie des nombres</a> (annotated scans of a few selected pages) %H A000901 R. W. Robinson, <a href="/A000899/a000899_1.pdf">Counting arrangements of bishops</a>, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy) %H A000901 R. G. Wilson, v, <a href="/A000900/a000900.pdf">Comments on the Larsen paper (no date)</a> %F A000901 For asymptotics see the Robinson paper. %p A000901 For Maple program see A000903. %K A000901 nonn,nice %O A000901 1,3 %A A000901 _N. J. A. Sloane_, _Robert G. Wilson v_ %E A000901 Corrected and extended by _Sean A. Irvine_, Aug 23 2011