This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000910 M3973 N1643 #42 Jul 19 2022 05:46:36 %S A000910 0,0,0,0,0,0,5,35,140,420,1050,2310,4620,8580,15015,25025,40040,61880, %T A000910 92820,135660,193800,271320,373065,504735,672980,885500,1151150, %U A000910 1480050,1883700,2375100,2968875,3681405,4530960,5537840,6724520,8115800,9738960,11623920,13803405 %N A000910 a(n) = 5*binomial(n, 6). %D A000910 Charles Jordan, Calculus of Finite Differences, Budapest, 1939, p. 449. %D A000910 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000910 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000910 Vincenzo Librandi, <a href="/A000910/b000910.txt">Table of n, a(n) for n = 0..1000</a> %H A000910 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A000910 a(n) = 5*A000579(n+3) = A080159(n+3, 3). %F A000910 G.f.: 5*x^6/(1-x)^7. - _Colin Barker_, Mar 01 2012 %F A000910 E.g.f.: x^6*exp(x)/144. - _G. C. Greubel_, May 22 2022 %F A000910 From _Amiram Eldar_, Jul 19 2022: (Start) %F A000910 Sum_{n>=6} 1/a(n) = 6/25. %F A000910 Sum_{n>=6} (-1)^n/a(n) = 192*log(2)/5 - 661/25. (End) %t A000910 Table[5Binomial[n, 6], {n, 0, 100}] (* _Stefan Steinerberger_, Apr 30 2006 *) %o A000910 (PARI) a(n)=5*binomial(n,6) \\ _Charles R Greathouse IV_, Oct 07 2015 %o A000910 (SageMath) [5*binomial(n,6) for n in (0..40)] # _G. C. Greubel_, May 22 2022 %Y A000910 A diagonal of A088617. %Y A000910 Cf. A080159, A000579, A210569. %K A000910 nonn,easy %O A000910 0,7 %A A000910 _N. J. A. Sloane_