This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000927 M2711 N1088 #59 Aug 09 2019 08:22:29 %S A000927 1,1,1,1,1,1,1,1,3,8,9,37,121,211,695,4889,41241,76301,853513,3882809, %T A000927 11957417,100146415,838216959,13379363737,411322824001,3547404378125, %U A000927 9069094643165,63434933542623,161784800122409,1612072001362952,2604529186263992195,28496379729272136525,646901570175200968153,1753848916484925681747,687887859687174720123201,2333546653547742584439257,56234327700401832767069245,2708534744692077051875131636 %N A000927 "First factor" (or relative class number) h- for cyclotomic field Q( exp(2 Pi / prime(n)) ). %C A000927 Washington gives a very extensive table. But beware errors: Washington incorrectly gives a(17) = 41421, a(25) = 411322842001 (corrected in the second edition). %D A000927 Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 429. %D A000927 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000927 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A000927 L. C. Washington, Introduction to Cyclotomic Fields, Springer, pp. 353-360 (1st edition) pp. 412-420 (2nd edition). %H A000927 Max Alekseyev, <a href="/A000927/b000927.txt">Table of n, a(n) for n = 1..100</a> %H A000927 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/cn/index.htm">Factorizations of Cyclotomic Numbers</a> %H A000927 M. Newman, <a href="http://www.jstor.org/stable/2004891">A table of the first factor for prime cyclotomic fields</a>, Math. Comp., 24 (1970), 215-219. %H A000927 M. A. Shokrollahi, <a href="https://web.archive.org/web/20150911191857/http://algo.epfl.ch/~amin/TAB.html">Tables</a> %F A000927 For n>2, a(n) equals absolute value of determinant of the matrix with entries floor(i*j/p)-floor((i-1)*j/p), 3 <= i,j <= (p-1)/2, where p = prime(n) = A000040(n). - _Max Alekseyev_, Oct 31 2012 %F A000927 a(n) = A061653(A000040(n)). %e A000927 For n = 9, prime(9) = 23, a(9) = 3. %e A000927 For n = 38, prime(38) = 163, a(38) = 2708534744692077051875131636. %p A000927 f:= proc(n) uses LinearAlgebra; %p A000927 local p,M; %p A000927 p:= ithprime(n); %p A000927 M:= Matrix((p-3)/2,(p-3)/2,(i,j) -> floor((i+1)*(j+2)/p) - floor(i*(j+2)/p)); %p A000927 abs(Determinant(M)); %p A000927 end proc: %p A000927 1, seq(f(n),n=3..50); # _Robert Israel_, Sep 20 2016 %t A000927 a[n_]:= With[{p = Prime[n]}, If[n<4, 1, Abs[ Det[ Table[ Quotient[ (i+2)*(j+2), p] - Quotient[ (i+1)*(j+2), p], {i, 1, (p-1)/2-2}, {j, 1, (p-1)/2-2}]]]]]; Table[a[n], {n, 1, 38}] (* _Jean-François Alcover_, Aug 01 2013, translated from Pari; modified by _G. C. Greubel_, Aug 08 2019 *) %o A000927 (PARI) { A000927(n) = if(n<3,return(1)); my(p=prime(n)); abs( matdet(matrix((p-1)/2-2, (p-1)/2-2, i, j, ((i+2)*(j+2))\p - ((i+1)*(j+2))\p)) ); } \\ _Max Alekseyev_, Oct 31 2012; corrected by _G. C. Greubel_ and _Michel Marcus_, Aug 07 2019 %Y A000927 Subsequence of A061653. %Y A000927 For the full class number h = h- * h+, see A055513, which agrees for the first 36 terms, assuming the Generalized Riemann Hypothesis. %K A000927 nonn,nice %O A000927 1,9 %A A000927 _N. J. A. Sloane_ %E A000927 Edited by _Max Alekseyev_, Oct 25 2012 %E A000927 a(1)=1 prepended by _Max Alekseyev_, Mar 05 2018