cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000932 a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1.

This page as a plain text file.
%I A000932 M2595 N1025 #84 Aug 21 2022 06:35:42
%S A000932 1,1,3,6,18,48,156,492,1740,6168,23568,91416,374232,1562640,6801888,
%T A000932 30241488,139071696,653176992,3156467520,15566830368,78696180768,
%U A000932 405599618496,2136915595392,11465706820800,62751681110208,349394351630208,1980938060495616
%N A000932 a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1.
%C A000932 From _Gary W. Adamson_, Apr 20 2009: (Start)
%C A000932 Uses the same recursive operation as A000085.
%C A000932 Eigensequence of an infinite lower triangular matrix with (1, 1, 1, ...) as the main diagonal and (0, 2, 3, 4, 5, ...) as the subdiagonal. To generate A000085, replace the "0" in the subdiagonal with "1". (End)
%D A000932 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000932 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000932 Seiichi Manyama, <a href="/A000932/b000932.txt">Table of n, a(n) for n = 0..799</a> (terms 0..200 from T. D. Noe)
%H A000932 Michael J. Kearney and Richard J. Martin, <a href="https://arxiv.org/abs/2104.03183">A note on an absorption problem for a Brownian particle moving in a harmonic potential</a>, arXiv:2104.03183 [cond-mat.stat-mech], 2021.
%F A000932 From _Paul D. Hanna_, Aug 23 2011: (Start)
%F A000932 E.g.f. satisfies: A(x) = 1 + (1+x)*Integral A(x) dx.
%F A000932 E.g.f. satisfies: A(x) = A'(x)/(1+x) - (A(x)-1)/(1+x)^2.
%F A000932 If offset 1, then e.g.f. A(x) satisfies: F(A(x)) = 1 + x, where F(x) equals the e.g.f. of A173895 and satisfies: F'(x) = 1/(1 + x*F(x)). (End)
%F A000932 a(n)/a(n-1) = sqrt(n)+1/2+o(1) - _Benoit Cloitre_, Jul 02 2004
%F A000932 a(n) = -sqrt(Pi)/2*Sum[(-1)^k*2^(k/2)*Binomial[n,k]*(HypergeometricPFQRegularized[{1,k-n},{1+(k-n)/2,(1/2)*(1+k-n)},-(1/2)]+(-k+n)*HypergeometricPFQRegularized[{1,1+k-n},{1+(k-n)/2,(1/2)*(3+k-n)},-(1/2)])*HypergeometricU[1-k/2,3/2,1/2],{k,1,n}]. - _Eric W. Weisstein_, May 08 2013
%F A000932 E.g.f.: (1/2)*(2+e^(1/2*(1+x)^2)*sqrt(2*Pi)*(1+x)*(-erf(1/sqrt(2))+erf((1+x)/sqrt(2)))). - _Eric W. Weisstein_, May 08 2013
%F A000932 a(n) ~ sqrt(Pi)*(1-erf(1/sqrt(2)))/2 * n^(n/2+1/2)*exp(sqrt(n)-n/2+1/4) * (1+19/(24*sqrt(n))). - _Vaclav Kotesovec_, Aug 10 2013
%F A000932 a(n) = Sum_{k=0..n} A180048(n,k). - _Philippe Deléham_, Oct 28 2013
%e A000932 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 6*x^3/3! + 18*x^4/4! + 48*x^5/5! + 156*x^6/6! + ...
%e A000932 If offset 1, then e.g.f. A(x) = x + x^2/2! + 3*x^3/3! + 6*x^4/4! + 18*x^5/5! + 48*x^6/6! + 156*x^7/7! + ... + a(n-1)*x^n/n! + ...
%e A000932 satisfies F(A(x)) = 1 + x, where F(x) = e.g.f. of A173895:
%e A000932 F(x) = 1 + x - x^2/2! + 9*x^4/4! - 48*x^5/5! + 15*x^6/6! + 2448*x^7/7! + ...
%t A000932 RecurrenceTable[{a[n] == a[n - 1] + n a[n - 2], a[0] == a[1] == 1}, a, {n, 26}] (* _Eric W. Weisstein_, May 08 2013 *)
%t A000932 t = {1, 1}; Do[AppendTo[t, t[[-1]] + n*t[[-2]]], {n, 2, 30}]; t (* _T. D. Noe_, Jun 21 2012 *)
%t A000932 f[x_]:=2^(-x/2-2)*Sqrt[Pi*E]*(Erf[1/Sqrt[2]]-1)*(HermiteH[x+1,I/Sqrt[2]]*(Sin[Pi*x/2]+I*Cos[Pi*x/2])+HermiteH[x+1,-I/Sqrt[2]]*(Sin[Pi*x/2]-I*Cos[Pi*x/2]))+2^(x/2+1)*Cos[Pi*x]*Gamma[x+2]*HermiteH[-x-2,1/Sqrt[2]]
%t A000932 Expand[FunctionExpand[Array[f,20,0]]] (* _Velin Yanev_, Oct 13 2021 *)
%Y A000932 Cf. A173895, A000085.
%K A000932 nonn,easy
%O A000932 0,3
%A A000932 _N. J. A. Sloane_
%E A000932 More terms from _Benoit Cloitre_, Jul 02 2004