cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000943 Number of combinatorial types of simplicial n-dimensional polytopes with n+3 nodes.

Original entry on oeis.org

1, 2, 5, 8, 18, 29, 57, 96, 183, 318, 604, 1080, 2047, 3762, 7145, 13354, 25471, 48164, 92193, 175780, 337581, 647313, 1246849, 2400828, 4636375, 8956045, 17334785, 33570800, 65108045, 126355319, 245492226, 477284164, 928772631, 1808538336
Offset: 1

Views

Author

Keywords

References

  • B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory); n := 50; for d from 2 to n do C(d) := 0; for h from 1 to d+3 do if (h mod 2 = 1) and (d+3 mod h = 0) then C(d) := C(d) + phi(h) * 2^((d+3)/h); fi; od; C(d) := 2^(floor(d/2)) - floor ((d+4)/2) + C(d)/(4*(d+3)); od: A000943 := n-> eval(C(n));
  • Mathematica
    a[ n_ ] := 2^Floor[ n/2 ]-Floor[ (n+4)/2 ]+(1/(4*(n+3)))*Plus@@Map[ EulerPhi[ # ]*2^((n+3)/#)&, Select[ Divisors[ n+3 ], OddQ ] ]

Extensions

n=12 term corrected (typo in reference), formula (due to Perles) and more terms from Lukas Finschi (finschi(AT)ifor.math.ethz.ch), Mar 06 2001