This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000963 M2660 N1062 #36 Apr 13 2022 13:25:15 %S A000963 0,1,0,3,7,16,49,104,322,683,2114,4485,13881,29450,91147,193378, %T A000963 598500,1269781,3929940,8337783,25805227,54748516,169445269,359496044, %U A000963 1112631142 %N A000963 The convergent sequence B_n for the ternary continued fraction (3,1;2,2) of period 2. %D A000963 D. N. Lehmer, On ternary continued fractions, Tohoku Math. J., 37 (1933), 436-445. %D A000963 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000963 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000963 Vincenzo Librandi, <a href="/A000963/b000963.txt">Table of n, a(n) for n = 0..1000</a> %H A000963 D. N. Lehmer, <a href="/A000962/a000962.pdf">On ternary continued fractions</a> (Annotated scanned copy) %H A000963 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A000963 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A000963 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,7,0,-3,0,1). %F A000963 G.f.: (-2x^5 + 7x^4 - 4x^3 + x)/(-x^6 + 3x^4 - 7x^2 + 1). %p A000963 A000963:=z*(-1+4*z**2-7*z**3+2*z**4)/(-1+7*z**2-3*z**4+z**6); # conjectured by _Simon Plouffe_ in his 1992 dissertation %p A000963 a:= n-> (Matrix([[16,7,3,0,1,0]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [0, 7, 0, -3, 0, 1][i] else 0 fi)^n)[1,6]: seq(a(n), n=0..24); # _Alois P. Heinz_, Aug 26 2008 %t A000963 CoefficientList[Series[(-2x^5+7x^4-4x^3+x)/(-x^6+3x^4-7x^2+1),{x,0,40}],x] (* _Vincenzo Librandi_, Apr 11 2012 *) %t A000963 LinearRecurrence[{0,7,0,-3,0,1},{0,1,0,3,7,16},30] (* _Harvey P. Dale_, Sep 06 2021 *) %Y A000963 Cf. A000962, A000964. %K A000963 nonn,cofr,easy %O A000963 0,4 %A A000963 _N. J. A. Sloane_