cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000970 Fermat coefficients.

This page as a plain text file.
%I A000970 M4386 N1846 #61 Feb 28 2022 14:23:18
%S A000970 1,7,25,66,143,273,476,775,1197,1771,2530,3510,4750,6293,8184,10472,
%T A000970 13209,16450,20254,24682,29799,35673,42375,49980,58565,68211,79002,
%U A000970 91025,104371,119133,135408,153296,172900,194327,217686,243090,270655
%N A000970 Fermat coefficients.
%D A000970 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A000970 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%H A000970 Vincenzo Librandi, <a href="/A000970/b000970.txt">Table of n, a(n) for n = 5..1000</a>
%H A000970 R. P. Loh, A. G. Shannon, A. F. Horadam, <a href="/A000969/a000969.pdf">Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients</a>, Preprint, 1980.
%H A000970 P. A. Piza, <a href="http://www.jstor.org/stable/3029103">Fermat coefficients</a>, Math. Mag., 27 (1954), 141-146.
%H A000970 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A000970 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A000970 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1,1,-4,6,-4,1).
%F A000970 G.f.: x^5(3x^5 + 2x^4 + 4x^3 + 3x^2 + 3x + 1)/((1-x^5)(1-x)^4).
%F A000970 a(n) = A258708(n,n-5) = A258708(2*n-7,2). - _Reinhard Zumkeller_, Jun 23 2015
%p A000970 A000970:=-(2*z**4+3*z**5+3*z**2+4*z**3+3*z+1)/(z**4+z**3+z**2+z+1)/(z-1)**5; # _Simon Plouffe_ in his 1992 dissertation
%t A000970 CoefficientList[Series[(3x^5+2x^4+4x^3+3x^2+3x+1)/((1-x^5)(1-x)^4),{x,0,50}],x] (* _Vincenzo Librandi_, Mar 28 2012 *)
%t A000970 LinearRecurrence[{4,-6,4,-1,1,-4,6,-4,1},{1,7,25,66,143,273,476,775,1197},40] (* _Harvey P. Dale_, Sep 06 2017 *)
%o A000970 (PARI) Vec((3*x^5+2*x^4+4*x^3+3*x^2+3*x+1)/(1-x^5)/(1-x)^4+O(x^99)) \\ _Charles R Greathouse IV_, Mar 28 2012
%o A000970 (Haskell)
%o A000970 a000970 n = a258708 n (n - 5)  -- _Reinhard Zumkeller_, Jun 23 2015
%Y A000970 Cf. A258708.
%K A000970 nonn,easy
%O A000970 5,2
%A A000970 _N. J. A. Sloane_
%E A000970 More terms from _Sean A. Irvine_, Sep 25 2011