This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000971 M4623 N1975 #36 Apr 29 2016 01:18:57 %S A000971 1,9,42,132,334,728,1428,2584,4389,7084,10963,16380,23751,33563,46376, %T A000971 62832,83657,109668,141778,181001,228459,285384,353127,433160,527085, %U A000971 636636,763686,910252,1078500,1270752,1489488,1737355,2017169,2331924 %N A000971 Fermat coefficients. %D A000971 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000971 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000971 Vincenzo Librandi, <a href="/A000971/b000971.txt">Table of n, a(n) for n = 6..1000</a> %H A000971 R. P. Loh, A. G. Shannon, A. F. Horadam, <a href="/A000969/a000969.pdf">Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients</a>, Preprint, 1980. %H A000971 P. A. Piza, <a href="http://www.jstor.org/stable/3029103">Fermat coefficients</a>, Math. Mag., 27 (1954), 141-146. %H A000971 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,19,-9,-9,18,-9,-9,19,-15,6,-1). %F A000971 G.f.: (1 + 3x + 3x^7 + x^8 + 3x^2 - 4x^3 + 10x^4 - 4x^5 + 3x^6)/(x^6 + x^3 + 1)/(-1+x)^6 (see MAPLE line). %F A000971 a(n) = A258708(n,n-6). - _Reinhard Zumkeller_, Jun 23 2015 %p A000971 (1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(-1+z)^6; %t A000971 CoefficientList[Series[(1+3*x+3*x^7+x^8+3*x^2-4*x^3+10*x^4-4*x^5+3*x^6)/(x^6+x^3+1)/(-1+x)^6,{x,0,40}],x] (* _Vincenzo Librandi_, Mar 28 2012 *) %o A000971 (PARI) Vec((1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(z-1)^6+O(x^99)) \\ _Charles R Greathouse IV_, Mar 28 2012 %o A000971 (Haskell) %o A000971 a000971 n = a258708 n (n - 6) -- _Reinhard Zumkeller_, Jun 23 2015 %Y A000971 Cf. A258708. %K A000971 nonn,easy %O A000971 6,2 %A A000971 _N. J. A. Sloane_ %E A000971 More terms from _Sean A. Irvine_, Sep 25 2011