cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000977 Numbers that are divisible by at least three different primes.

This page as a plain text file.
%I A000977 #46 Apr 22 2024 08:38:00
%S A000977 30,42,60,66,70,78,84,90,102,105,110,114,120,126,130,132,138,140,150,
%T A000977 154,156,165,168,170,174,180,182,186,190,195,198,204,210,220,222,228,
%U A000977 230,231,234,238,240,246,252,255,258,260,264,266,270,273,276,280,282,285
%N A000977 Numbers that are divisible by at least three different primes.
%C A000977 a(n+1)-a(n) seems bounded and sequence appears to give n such that the number of integers of the form nk/(n+k) k>=1 is not equal to Sum_{ d | n} omega(d) (i.e., n such that A062799(n) is not equal to A063647(n)). - _Benoit Cloitre_, Aug 27 2002
%C A000977 The first differences are bounded: clearly a(n+1) - a(n) <= 30. - _Charles R Greathouse IV_, Dec 19 2011
%D A000977 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
%H A000977 Vincenzo Librandi, <a href="/A000977/b000977.txt">Table of n, a(n) for n = 1..10000</a>
%H A000977 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%F A000977 a(n) = n + O(n log log n / log n). - _Charles R Greathouse IV_, Dec 19 2011 A001221(a(n)) > 2. - _Reinhard Zumkeller_, May 03 2013
%F A000977 A033992 UNION A033993 UNION A051270 UNION A074969 UNION A176655 UNION ... - _R. J. Mathar_, Dec 05 2016
%p A000977 A000977 := proc(n)
%p A000977 if (nops(numtheory[factorset](n)) >= 3) then
%p A000977    RETURN(n)
%p A000977 fi: end:  seq(A000977(n), n=1..500); # _Jani Melik_, Feb 24 2011
%t A000977 DeleteCases[Table[If[Count[PrimeQ[Divisors[i]], True] >= 3, i, 0], {i, 1, 274}], 0]
%t A000977 Select[Range[300], PrimeNu[#] >= 3 &] (* _Paolo Xausa_, Mar 28 2024 *)
%o A000977 (PARI) is(n)=omega(n)>2 \\ _Charles R Greathouse IV_, Dec 19 2011
%o A000977 (Haskell)
%o A000977 a000977 n = a000977_list !! (n-1)
%o A000977 a000977_list = filter ((> 2) . a001221) [1..]
%o A000977 -- _Reinhard Zumkeller_, May 03 2013
%Y A000977 Cf. A000961, A007774, A033992, A033993, A051270.
%Y A000977 Complement of A070915.
%K A000977 nonn,easy
%O A000977 1,1
%A A000977 _N. J. A. Sloane_
%E A000977 More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 17 2002