This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000985 M2907 N1168 #44 Jan 13 2025 11:24:27 %S A000985 1,1,3,11,56,348,2578,22054,213798,2313638,27627434,360646314, %T A000985 5107177312,77954299144,1275489929604,22265845018412,412989204564572, %U A000985 8109686585668956,168051656468233972,3664479286118269972,83868072451846938336,2009964340465840802576 %N A000985 Number of n X n symmetric matrices with nonnegative entries and all row sums 2. %D A000985 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000985 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A000985 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.7. %H A000985 T. D. Noe, <a href="/A000985/b000985.txt">Table of n, a(n) for n=0..100</a> %H A000985 Jacob L. Bourjaily, Michael Plesser, and Cristian Vergu, <a href="https://arxiv.org/abs/2412.21189">The Many Colours of Amplitudes</a>, arXiv:2412.21189 [hep-th], 2024. See p. 33. %H A000985 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 584 %H A000985 H. Gupta, <a href="http://dx.doi.org/10.1215/S0012-7094-68-03567-9">Enumeration of symmetric matrices</a>, Duke Math. J., 35 (1968), vol 3, 653-659. %H A000985 H. Gupta, <a href="/A000085/a000085.pdf">Enumeration of symmetric matrices</a> (annotated scanned copy) %H A000985 Tomislav Došlic and Darko Veljan, <a href="http://dx.doi.org/10.1016/j.disc.2007.04.066">Logarithmic behavior of some combinatorial sequences</a>, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019). - From _N. J. A. Sloane_, May 01 2012 %F A000985 E.g.f.: (1-x)^(-1/2)*exp(x^2/4 + x/(2*(1-x))). %F A000985 a(n) ~ n^n*exp(sqrt(2*n)-n)/sqrt(2) * (1-5/(24*sqrt(2*n))). - _Vaclav Kotesovec_, Jul 29 2013 %F A000985 Recurrence: 2*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-2)*(n-1)*a(n-2) - 2*(n-2)*(n-1)*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4). - _Vaclav Kotesovec_, Jul 29 2013 %t A000985 max = 21; egf[x_] := (1-x)^(-1/2)*Exp[x^2/4 + x/(2*(1-x))]; CoefficientList[ Series[ egf[x], {x, 0, max}], x]*Range[0, max]! (* _Jean-François Alcover_, Nov 25 2011 *) %Y A000985 Cf. A000986. %K A000985 nonn,nice,easy %O A000985 0,3 %A A000985 _N. J. A. Sloane_