This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001009 #36 Sep 03 2025 01:37:58 %S A001009 1,1,1,1,1,1,1,3,4,4,1,11,46,56,56,1,53,1064,6552,9408,9408,1,309, %T A001009 35792,1293216,11270400,16942080,16942080,1,2119,1673792,420909504, %U A001009 27206658048,335390189568,535281401856,535281401856,1,16687,103443808 %N A001009 Triangle giving number L(n,k) of normalized k X n Latin rectangles. %D A001009 CRC Handbook of Combinatorial Designs, 1996, p. 104. %H A001009 Herman Jamke, <a href="/A001009/b001009.txt">Table of n, a(n) for n = 1..66</a> %H A001009 Thomas Bloom, <a href="https://www.erdosproblems.com/725">Problem 725</a>, Erdős Problems. %H A001009 Eric Fernando Bravo, <a href="https://www.mathos.unios.hr/mc/index.php/mc/article/view/4733">On concatenations of Padovan and Perrin numbers</a>, Math. Commun. (2023) Vol 28, 105-119. %H A001009 Brendan D. McKay and Eric Rogoyski , <a href="https://doi.org/10.37236/1222">Latin squares of order 10</a>, Electron. J. Combinatorics, 2 (1995) #N3. %H A001009 Douglas S. Stones, <a href="https://doi.org/10.37236/487">The many formulas for the number of Latin rectangles</a>, Electron. J. Combin 17 (2010), A1. %H A001009 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LatinRectangle.html">Latin Rectangle</a>. %H A001009 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a> %Y A001009 Rows include A001623, A000573. Diagonals include A000576. %K A001009 nonn,tabl,nice,changed %O A001009 1,8 %A A001009 _Brendan McKay_ %E A001009 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 12 2010