This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001013 M0993 N0372 #111 Feb 16 2025 08:32:22 %S A001013 1,2,4,6,8,12,16,24,32,36,48,64,72,96,120,128,144,192,216,240,256,288, %T A001013 384,432,480,512,576,720,768,864,960,1024,1152,1296,1440,1536,1728, %U A001013 1920,2048,2304,2592,2880,3072,3456,3840,4096,4320,4608,5040,5184,5760 %N A001013 Jordan-Polya numbers: products of factorial numbers A000142. %C A001013 Also, numbers of the form 1^d_1*2^d_2*3^d_3*...*k^d_k where k, d_1, ..., d_k are natural numbers satisfying d_1 >= d_2 >= d_3 >= ... >= d_k >= 1. - _N. J. A. Sloane_, Jun 14 2015 %C A001013 Possible orders of automorphism groups of trees. %C A001013 Except for the numbers 2, 9 and 10 this sequence is conjectured to be the same as A034878. %C A001013 Equivalently, (a(n)/6)*(6*x^2 - 6*x + (6*x-3)*a(n) + 2*a(n)^2 + 1) = N^2 has an integer solution. - _Ralf Stephan_, Dec 04 2004 %C A001013 Named after the French mathematician Camille Jordan (1838-1922) and the Hungarian mathematician George Pólya (1887-1985). - _Amiram Eldar_, May 22 2021 %C A001013 Possible numbers of transitive orientations of comparability graphs (Golumbic, 1977). - _David Eppstein_, Dec 29 2021 %D A001013 Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B23, p. 123. %D A001013 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001013 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001013 Reinhard Zumkeller, <a href="/A001013/b001013.txt">Table of n, a(n) for n = 1..10000</a> (first 987 terms from T. D. Noe) %H A001013 Jean-Marie De Koninck, Nicolas Doyon, A. Arthur Bonkli Razafindrasoanaivolala and William Verreault, <a href="https://doi.org/10.5817/AM2020-3-141">Bounds for the counting function of the Jordan-Pólya numbers</a>, Archivum Mathematicum, Vol. 56, No. 3 (2020), pp. 141-152; also <a href="https://arxiv.org/abs/2107.09114">on arXiv</a>, arXiv:2107.09114 [math.NT], 2021. %H A001013 Martin Charles Golumbic, <a href="https://doi.org/10.1016/0095-8956(77)90049-1">Comparability graphs and a new matroid</a>, Journal of Combinatorial Theory, Series B, Vol. 22, No. 1 (1977), pp. 68-90. %H A001013 Camille Jordan, <a href="https://doi.org/10.1515/crll.1869.70.185">Sur les assemblages de lignes</a>, Journal für die reine und angewandte Mathematik, Vol. 70 (1869), pp. 185-190; <a href="https://eudml.org/doc/148084">alternative link</a>. %H A001013 Robert A. Melter, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80025-0">Autometrized unary algebras</a>, J. Combinatorial Theory, Vol. 5, No. 1 (1968), pp. 21-29. %H A001013 George Pólya, <a href="https://doi.org/10.1007/BF02546665">Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen</a>, Acta Mathematica, Vol. 68 (1937), pp. 145-254; <a href="http://archive.ymsc.tsinghua.edu.cn/pacm_download/117/5571-11511_2006_Article_BF02546665.pdf">alternative link</a>. %H A001013 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FactorialProducts.html">Factorial Products</a>. %H A001013 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a> %H A001013 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %e A001013 864 = (3!)^2*4!. %p A001013 N:= 10000: # get all terms <= N %p A001013 S:= {1}: %p A001013 for k from 2 do %p A001013 kf:= k!; %p A001013 if kf > N then break fi; %p A001013 S := S union {seq(seq(kf^j * s, j = 1 .. floor(log[kf](N/s))),s=S)}; %p A001013 od: %p A001013 S; # if using Maple 11 or earlier, uncomment the next line: %p A001013 # sort(convert(S,list)); %p A001013 # _Robert Israel_, Sep 09 2014 %t A001013 For[p=0; a=f=Table[n!, {n, 1, 8}], p=!=a, p=a; a=Select[Union@@Outer[Times, f, a], #<=8!&]]; a %o A001013 (Sage) # uses[prod_hull from A246663] %o A001013 prod_hull(factorial, 5760) # _Peter Luschny_, Sep 09 2014 %o A001013 (Haskell) %o A001013 import Data.Set (empty, fromList, deleteFindMin, union) %o A001013 import qualified Data.Set as Set (null) %o A001013 a001013 n = a001013_list !! (n-1) %o A001013 a001013_list = 1 : h 0 empty [1] (drop 2 a000142_list) where %o A001013 h z s mcs xs'@(x:xs) %o A001013 | Set.null s || x < m = h z (union s (fromList $ map (* x) mcs)) mcs xs %o A001013 | m == z = h m s' mcs xs' %o A001013 | otherwise = m : h m (union s' (fromList (map (* m) $ init (m:mcs)))) (m:mcs) xs' %o A001013 where (m, s') = deleteFindMin s %o A001013 -- _Reinhard Zumkeller_, Nov 13 2014 %o A001013 (PARI) list(lim,mx=lim)=if(lim<2, return([1])); my(v=[1],t=1); for(n=2,mx, t*=n; if(t>lim, break); v=concat(v,t*list(lim\t, t))); Set(v) \\ _Charles R Greathouse IV_, May 18 2015 %o A001013 (Python) %o A001013 def aupto(lim, mx=None): %o A001013 if lim < 2: return [1] %o A001013 v, t = [1], 1 %o A001013 if mx == None: mx = lim %o A001013 for k in range(2, mx+1): %o A001013 t *= k %o A001013 if t > lim: break %o A001013 v += [t*rest for rest in aupto(lim//t, t)] %o A001013 return sorted(set(v)) %o A001013 print(aupto(5760)) # _Michael S. Branicky_, Jul 21 2021 after _Charles R Greathouse IV_ %Y A001013 Cf. A000142, A034878, A093373 (complement), A344438 (characteristic function). %Y A001013 Union of A344181 and A344179. Subsequence of A025487 (see also A064783). %Y A001013 See also A359636 and A359751. %K A001013 nonn,nice,easy %O A001013 1,2 %A A001013 _N. J. A. Sloane_ %E A001013 More terms, formula from _Christian G. Bower_, Dec 15 1999 %E A001013 Edited by _Dean Hickerson_, Sep 17 2002