cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001020 Powers of 11: a(n) = 11^n.

This page as a plain text file.
%I A001020 M4807 N2054 #107 Jan 06 2025 01:29:47
%S A001020 1,11,121,1331,14641,161051,1771561,19487171,214358881,2357947691,
%T A001020 25937424601,285311670611,3138428376721,34522712143931,
%U A001020 379749833583241,4177248169415651,45949729863572161,505447028499293771,5559917313492231481,61159090448414546291
%N A001020 Powers of 11: a(n) = 11^n.
%C A001020 Same as Pisot sequences E(1, 11), L(1, 11), P(1, 11), T(1, 11). Essentially same as Pisot sequences E(11, 121), L(11, 121), P(11, 121), T(11, 121). See A008776 for definitions of Pisot sequences.
%C A001020 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 11-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011
%C A001020 a(n), for n <= 4, gives the n-th row of Pascal's triangle (A007318); a(n), n >= 5 "sort of" gives the n-th row of Pascal's triangle, but now the binomial coefficients with more than one digit overlap. - _Daniel Forgues_, Aug 12 2012
%C A001020 Numbers k such that sigma(11*k) = 11*k + sigma(k). - _Jahangeer Kholdi_, Nov 13 2013
%D A001020 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001020 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001020 T. D. Noe, <a href="/A001020/b001020.txt">Table of n, a(n) for n = 0..100</a>
%H A001020 P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H A001020 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=275">Encyclopedia of Combinatorial Structures 275</a>.
%H A001020 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A001020 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A001020 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H A001020 Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
%H A001020 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (11).
%F A001020 G.f.: 1/(1-11*x).
%F A001020 E.g.f.: exp(11*x).
%F A001020 a(n) = 11*a(n-1), n > 0; a(0)=1. - _Philippe Deléham_, Nov 23 2008
%p A001020 A001020:=-1/(-1+11*z); # _Simon Plouffe_ in his 1992 dissertation
%t A001020 Table[11^n,{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2011 *)
%o A001020 (Magma) [11^n: n in [0..100]]; // _Vincenzo Librandi_, Apr 24 2011
%o A001020 (Maxima) makelist(11*n,n,0,20); /* _Martin Ettl_, Dec 17 2012 */
%o A001020 (PARI) a(n)=n^11 \\ _Charles R Greathouse IV_, Sep 24 2015
%Y A001020 Cf. A096884, A097659, A007318.
%K A001020 nonn,easy
%O A001020 0,2
%A A001020 _N. J. A. Sloane_