cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001023 Powers of 14.

This page as a plain text file.
%I A001023 M4949 N2120 #84 Jul 02 2025 16:01:54
%S A001023 1,14,196,2744,38416,537824,7529536,105413504,1475789056,20661046784,
%T A001023 289254654976,4049565169664,56693912375296,793714773254144,
%U A001023 11112006825558016,155568095557812224,2177953337809371136,30491346729331195904,426878854210636742656,5976303958948914397184,83668255425284801560576
%N A001023 Powers of 14.
%C A001023 Same as Pisot sequences E(1, 14), L(1, 14), P(1, 14), T(1, 14). Essentially same as Pisot sequences E(14, 196), L(14, 196), P(14, 196), T(14, 196). See A008776 for definitions of Pisot sequences.
%C A001023 Number of n-permutations of 15 objects: l, m, n, o, p, q, r, s, t, u, v, w, z, x, y with repetition allowed and containing no u's, (u-free). Permutations with repetitions! If n=0 then 1 >>14^0=1 "". (no u's.) If n=1 then 13 >>14^1=14, >> l, m, n, o, p, q, r, s, t, v, w, z, x, y. (no u's.) etc. - _Zerinvary Lajos_, Jul 01 2009
%C A001023 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 14-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011
%D A001023 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001023 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001023 T. D. Noe, <a href="/A001023/b001023.txt">Table of n, a(n) for n = 0..100</a>
%H A001023 Peter J. Cameron, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H A001023 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=278">Encyclopedia of Combinatorial Structures 278</a>.
%H A001023 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A001023 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A001023 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A001023 Yash Puri and Thomas Ward, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
%H A001023 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (14).
%F A001023 G.f.: 1/(1-14x), e.g.f.: exp(14x)
%F A001023 A000005(a(n)) = A000290(n+1). - _Reinhard Zumkeller_, Mar 04 2007
%F A001023 a(n) = 14^n; a(n) = 14*a(n-1) with a(0)=1. - _Vincenzo Librandi_, Nov 21 2010
%p A001023 A001023:=-1/(-1+14*z); # conjectured by _Simon Plouffe_ in his 1992 dissertation
%t A001023 Table[14^n,{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2011 *)
%t A001023 Denominator/@HermiteH[Range[0,20],5/28] (* _Harvey P. Dale_, Jul 11 2011 *)
%o A001023 (Sage) [lucas_number1(n,14,0) for n in range(1, 18)]# _Zerinvary Lajos_, Apr 29 2009
%o A001023 (Magma) [ 14^n: n in [0..20] ]; // _Vincenzo Librandi_, Nov 21 2010
%o A001023 (Magma) [ n eq 1 select 1 else 14*Self(n-1): n in [1..21] ];
%o A001023 (PARI) a(n)=14^n \\ _Charles R Greathouse IV_, Nov 18 2011
%o A001023 (Python) print([14**n for n in range(21)]) # _Michael S. Branicky_, Jan 14 2021
%Y A001023 Cf. A000005, A000290, A160193.
%Y A001023 Row 9 of A329332.
%K A001023 nonn,easy
%O A001023 0,2
%A A001023 _N. J. A. Sloane_
%E A001023 More terms from _James Sellers_, Sep 19 2000