cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001024 Powers of 15.

This page as a plain text file.
%I A001024 M4990 N2147 #82 Jul 02 2025 16:01:54
%S A001024 1,15,225,3375,50625,759375,11390625,170859375,2562890625,38443359375,
%T A001024 576650390625,8649755859375,129746337890625,1946195068359375,
%U A001024 29192926025390625,437893890380859375,6568408355712890625,98526125335693359375,1477891880035400390625,22168378200531005859375,332525673007965087890625
%N A001024 Powers of 15.
%C A001024 Same as Pisot sequences E(1, 15), L(1, 15), P(1, 15), T(1, 15). Essentially same as Pisot sequences E(15, 225), L(15, 225), P(15, 225), T(15, 225). See A008776 for definitions of Pisot sequences.
%C A001024 A000005(a(n)) = A000290(n+1). - _Reinhard Zumkeller_, Mar 04 2007
%C A001024 If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4} such that for fixed y_1,y_2,...,y_n in {1,2,3,4} we have f(X_i)<>{y_i}, (i=1,2,...,n). - _Milan Janjic_, May 24 2007
%C A001024 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 15-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011
%C A001024 Number of ways to assign truth values to n quaternary disjunctions connected by conjunctions such that the proposition is true. For example, a(2) = 225, since for the proposition (a v b v c v d) & (e v f v g v h) there are 225 assignments that make the proposition true. - _Ori Milstein_, Jan 26 2023
%D A001024 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001024 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001024 T. D. Noe, <a href="/A001024/b001024.txt">Table of n, a(n) for n = 0..100</a>
%H A001024 P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H A001024 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=279">Encyclopedia of Combinatorial Structures 279</a>
%H A001024 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>
%H A001024 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A001024 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A001024 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A001024 Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
%H A001024 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (15).
%F A001024 G.f.: 1/(1-15x), e.g.f.: exp(15x)
%F A001024 a(n) = 15^n; a(n) = 15*a(n-1) with a(0)=1. - _Vincenzo Librandi_, Nov 21 2010
%p A001024 A001024:=-1/(-1+15*z); # _Simon Plouffe_ in his 1992 dissertation
%t A001024 Table[15^n,{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2011 *)
%o A001024 (Magma) [ 15^n: n in [0..20] ]; // _Vincenzo Librandi_, Nov 21 2010
%o A001024 (Magma) [ n eq 1 select 1 else 15*Self(n-1): n in [1..21] ];
%o A001024 (PARI) a(n)=15^n \\ _Charles R Greathouse IV_, Sep 24 2015
%Y A001024 a(n) = A159991(n)/A000302(n). - _Reinhard Zumkeller_, May 02 2009
%Y A001024 Row 6 of A329332.
%K A001024 nonn,easy
%O A001024 0,2
%A A001024 _N. J. A. Sloane_
%E A001024 More terms from _James Sellers_, Sep 19 2000