This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001026 M5048 N2182 #77 Jul 02 2025 16:01:54 %S A001026 1,17,289,4913,83521,1419857,24137569,410338673,6975757441, %T A001026 118587876497,2015993900449,34271896307633,582622237229761, %U A001026 9904578032905937,168377826559400929,2862423051509815793,48661191875666868481,827240261886336764177,14063084452067724991009,239072435685151324847153,4064231406647572522401601 %N A001026 Powers of 17. %C A001026 Same as Pisot sequences E(1, 17), L(1, 17), P(1, 17), T(1, 17). Essentially same as Pisot sequences E(17, 289), L(17, 289), P(17, 289), T(17, 289). See A008776 for definitions of Pisot sequences. %C A001026 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 17-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011 %C A001026 Numbers n such that sigma(17*n) = 17*n + sigma(n). - _Jahangeer Kholdi_, Nov 23 2013 %D A001026 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001026 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001026 T. D. Noe, <a href="/A001026/b001026.txt">Table of n, a(n) for n = 0..100</a> %H A001026 P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. %H A001026 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=281">Encyclopedia of Combinatorial Structures 281</a> %H A001026 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A001026 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A001026 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A001026 Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1. %H A001026 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (17). %F A001026 G.f.: 1/(1-17x), e.g.f.: exp(17x). %F A001026 a(n)=17^n ; a(n)=17*a(n-1) n>0, a(0)=1. - _Vincenzo Librandi_, Nov 21 2010 %F A001026 G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (4(k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 15 2013 %p A001026 A001026:=-1/(-1+17*z); [_Simon Plouffe_ in his 1992 dissertation.] %t A001026 Table[17^n,{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2011 *) %o A001026 (Sage) [lucas_number1(n,17,0) for n in range(1, 17)] # _Zerinvary Lajos_, Apr 29 2009 %o A001026 (Magma)[17^n: n in [0..100]]; // _Vincenzo Librandi_, Nov 21 2010 %o A001026 (Maxima) A001026(n):=17^n$ %o A001026 makelist(A001026(n),n,0,30); /* _Martin Ettl_, Nov 05 2012 */ %o A001026 (PARI) a(n)=17^n \\ _Charles R Greathouse IV_, Sep 24 2015 %K A001026 nonn,easy %O A001026 0,2 %A A001026 _N. J. A. Sloane_ %E A001026 More terms from _James Sellers_, Sep 19 2000