cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001034 Orders of noncyclic simple groups (without repetition).

This page as a plain text file.
%I A001034 M5318 N2311 #76 Jun 14 2024 22:31:08
%S A001034 60,168,360,504,660,1092,2448,2520,3420,4080,5616,6048,6072,7800,7920,
%T A001034 9828,12180,14880,20160,25308,25920,29120,32736,34440,39732,51888,
%U A001034 58800,62400,74412,95040,102660,113460,126000,150348,175560,178920
%N A001034 Orders of noncyclic simple groups (without repetition).
%C A001034 An alternative definition, to assist in searching: Orders of non-cyclic finite simple groups.
%C A001034 This comment is about the three sequences A001034, A060793, A056866: The Feit-Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001 [Corrected by _Isaac Saffold_, Aug 09 2021]
%C A001034 The primitive elements are A257146. These are also the primitive elements of A056866. - _Charles R Greathouse IV_, Jan 19 2017
%C A001034 Conjecture: This is a subsequence of A083207 (Zumkeller numbers). Verified for n <= 156. A fast provisional test was used, based on Proposition 17 from Rao/Peng JNT paper (see A083207). For those few cases where the fast test failed (such as 2588772 and 11332452) the comprehensive (but much slower) test by _T. D. Noe_ at A083207 was used for result confirmation. - _Ivan N. Ianakiev_, Jan 11 2020
%C A001034 From _M. Farrokhi D. G._, Aug 11 2020: (Start)
%C A001034 The conjecture is not true. The smallest and the only counterexample among the first 457 terms of the sequence is a(175) = 138297600.
%C A001034 On the other hand, the orders of sporadic simple groups are Zumkeller. And with the exception of the smallest two orders 7920 and 95040, the odd part of the other orders are also Zumkeller. (End)
%C A001034 Every term in this sequence is divisible by 4*p*q, where p and q are distinct odd primes. - _Isaac Saffold_, Oct 24 2021
%D A001034 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
%D A001034 Dickson L.E. Linear groups, with an exposition of the Galois field theory (Teubner, 1901), p. 309.
%D A001034 M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
%D A001034 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001034 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001034 M. Farrokhi D. G., <a href="/A001034/b001034.txt">Table of n, a(n) for n = 1..10000</a>
%H A001034 C. Cato, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0430052-X">The orders of the known simple groups as far as one trillion</a>, Math. Comp., 31 (1977), 574-577.
%H A001034 L. E. Dickson, <a href="https://hdl.handle.net/2027/coo.31924062612092">Linear Groups with an Exposition of the Galois Field Theory</a> (page images), Dover, NY, 1958, p. 309.
%H A001034 M. Farrokhi D. G., <a href="/A001034/a001034.txt">A GAP function generating the smallest non-cyclic finite simple group order greater than a given number m</a>.
%H A001034 Walter Feit and J. G. Thompson, <a href="https://doi.org/10.1073/pnas.48.6.968">A solvability criterion for finite groups and some consequences</a>, Proc. N. A. S. 48 (6) (1962) 968.
%H A001034 M. Hall Jr., <a href="https://doi.org/10.1016/0021-8693(72)90090-7">Simple groups of order less than one million</a>, J. Alg. 20 (1) (1972) 98-102
%H A001034 David A. Madore, <a href="http://www.madore.org/~david/math/simplegroups.html">More terms</a>
%H A001034 N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 5.
%H A001034 <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%H A001034 <a href="/index/Cor#core">Index entries for "core" sequences</a>
%Y A001034 Cf. A000001, A000679, A005180, A001228, A060793, A056866, A056868, A119630.
%Y A001034 Cf. A109379 (orders with repetition), A119648 (orders that are repeated).
%K A001034 nonn,nice,core
%O A001034 1,1
%A A001034 _N. J. A. Sloane_, _Simon Plouffe_