This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001055 M0095 N0032 #175 Feb 16 2025 08:32:22 %S A001055 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5,1,4,1,4,2,2,1,7,2,2,3,4,1,5,1,7,2,2, %T A001055 2,9,1,2,2,7,1,5,1,4,4,2,1,12,2,4,2,4,1,7,2,7,2,2,1,11,1,2,4,11,2,5,1, %U A001055 4,2,5,1,16,1,2,4,4,2,5,1,12,5,2,1,11,2,2,2,7,1,11,2,4,2,2,2,19,1,4,4,9,1,5,1 %N A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention). %C A001055 From _David W. Wilson_, Feb 28 2009: (Start) %C A001055 By a factorization of n we mean a multiset of integers > 1 whose product is n. %C A001055 For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2. %C A001055 Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3. %C A001055 1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End) %C A001055 a(n) = # { k | A064553(k) = n }. - _Reinhard Zumkeller_, Sep 21 2001; _Benoit Cloitre_ and _N. J. A. Sloane_, May 15 2002 %C A001055 Number of members of A025487 with n divisors. - _Matthew Vandermast_, Jul 12 2004 %C A001055 See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - _T. D. Noe_, Jun 28 2009 %C A001055 So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - _Michel Marcus_, Nov 11 2015 %C A001055 For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - _Gus Wiseman_, Feb 07 2025 %D A001055 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844. %D A001055 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295. %D A001055 Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4. %D A001055 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001055 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A001055 G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211). %H A001055 T. D. Noe, <a href="/A001055/b001055.txt">Table of n, a(n) for n = 1..10000</a> %H A001055 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001055 D. Beckwith, <a href="http://www.jstor.org/stable/2589410">Problem 10669</a>, Amer. Math. Monthly 105 (1998), p. 559. %H A001055 R. E. Canfield, P. Erdős and C. Pomerance, <a href="https://doi.org/10.1016/0022-314X(83)90002-1">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28. %H A001055 R. E. Canfield, P. Erdős and C. Pomerance, <a href="http://renyi.hu/~p_erdos/1983-11.pdf">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28. [A second link to the same paper.] %H A001055 Marc Chamberland, Colin Johnson, Alice Nadeau, and Bingxi Wu, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i2p57">Multiplicative Partitions</a>, Electronic Journal of Combinatorics, 20(2) (2013), #P57. %H A001055 S. R. Finch, <a href="/A001055/a001055.pdf">Kalmar's composition constant</a>, Jun 05 2003. [Cached copy, with permission of the author] %H A001055 Shamik Ghosh, <a href="http://arxiv.org/abs/0811.3479">Counting number of factorizations of a natural number</a>, arXiv:0811.3479 [cs.DM], 2008. %H A001055 R. K. Guy and R. J. Nowakowski, <a href="http://www.jstor.org/stable/2975272">Monthly unsolved problems</a>, 1969-1995, Amer. Math. Monthly, 102 (1995), 921-926. %H A001055 John F. Hughes and J. O. Shallit, <a href="https://www.jstor.org/stable/2975729">On the Number of Multiplicative Partitions</a>, American Mathematical Monthly 90(7) (1983), 468-471. %H A001055 Cao Hui-Zhong and Ku Tung-Hsin, <a href="http://www.math.bas.bg/infres/MathBalk/MB-04/MB-04-325-328.pdf">On the Enumeration Function of Multiplicative Partitions</a>, Math. Balkanica, Vol. 4 (1990), Fasc. 3-4. %H A001055 Florian Luca, Anirban Mukhopadhyay and Kotyada Srinivas, <a href="http://arxiv.org/abs/0807.0986">On the Oppenheim's "factorisatio numerorum" function</a>, arXiv:0807.0986 [math.NT], 2008. %H A001055 Pankaj Jyoti Mahanta, <a href="https://arxiv.org/abs/2010.07353">On the number of partitions of n whose product of the summands is at most n</a>, arXiv:2010.07353 [math.CO], 2020. %H A001055 Amarnath Murthy, <a href="http://www.gallup.unm.edu/~smarandache/murthy11.htm">Generalization of Partition Function (Introducing the Smarandache Factor Partition)</a> [Broken link] %H A001055 Amarnath Murthy and Charles Ashbacher, <a href="http://fs.unm.edu/MurthyBook.pdf">Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences</a>, Hexis, Phoenix; USA 2005. See Section 1.4. %H A001055 Paul Pollack, <a href="http://dx.doi.org/10.1090/S0002-9939-2012-11254-7">On the parity of the number of multiplicative partitions and related problems</a>, Proc. Amer. Math. Soc. 140 (2012), 3793-3803. %H A001055 Marko Riedel, <a href="http://math.stackexchange.com/questions/629406/how-can-we-compute-the-multiplicative-partition-function">Calculating the multiplicative partition function in Maple with the Polya Enumeration Theorem</a> %H A001055 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnorderedFactorization.html">Unordered Factorization</a> %H A001055 Wikipedia, <a href="http://en.wikipedia.org/wiki/Multiplicative_partition">Multiplicative Partition Function</a> %H A001055 <a href="/index/Cor#core">Index entries for "core" sequences</a> %F A001055 The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - _Jonathan Vos Post_, Jul 07 2008 %F A001055 Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s). %F A001055 If n = p^k for a prime p, a(n) = partitions(k) = A000041(k). %F A001055 Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - _Reinhard Zumkeller_ and Ulrich Schimke (ulrschimke(AT)aol.com) %F A001055 a(A002110(n)) = A000110(n). %F A001055 a(p^k*q^k) = A002774(k) if p and q are distinct primes. - _R. J. Mathar_, Jun 06 2024 %F A001055 a(n) = A028422(n) + 1. - _Gus Wiseman_, Feb 07 2025 %e A001055 1: 1, a(1) = 1 %e A001055 2: 2, a(2) = 1 %e A001055 3: 3, a(3) = 1 %e A001055 4: 4 = 2*2, a(4) = 2 %e A001055 6: 6 = 2*3, a(6) = 2 %e A001055 8: 8 = 2*4 = 2*2*2, a(8) = 3 %e A001055 etc. %p A001055 with(numtheory): %p A001055 T := proc(n::integer, m::integer) %p A001055 local A, summe, d: %p A001055 if isprime(n) then %p A001055 if n <= m then %p A001055 return 1; %p A001055 end if: %p A001055 return 0 ; %p A001055 end if: %p A001055 A := divisors(n) minus {n, 1}: %p A001055 for d in A do %p A001055 if d > m then %p A001055 A := A minus {d}: %p A001055 end if: %p A001055 end do: %p A001055 summe := add(T(n/d,d),d=A) ; %p A001055 if n <=m then %p A001055 summe := summe + 1: %p A001055 end if: %p A001055 summe ; %p A001055 end proc: %p A001055 A001055 := n -> T(n, n): %p A001055 [seq(A001055(n), n=1..100)]; # _Reinhard Zumkeller_ and Ulrich Schimke (ulrschimke(AT)aol.com) %t A001055 c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - _Dean Hickerson_, Oct 28 2002 *) %t A001055 T[_, 1] = T[1, _] = 1; %t A001055 T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&]; %t A001055 a[n_] := T[n, n]; %t A001055 a /@ Range[100] (* _Jean-François Alcover_, Jan 03 2020 *) %o A001055 (PARI) /* factorizations of n with factors <= m (n,m positive integers) */ %o A001055 fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s} %o A001055 A001055(n) = fcnt(n,n) \\ _Michael B. Porter_, Oct 29 2009 %o A001055 (PARI) \\ code using Dirichlet g.f., based on Somos's code for A007896 %o A001055 {a(n) = my(A, v, w, m); %o A001055 if( %o A001055 n<1, 0, %o A001055 \\ define unit vector v = [1, 0, 0, ...] of length n %o A001055 v = vector(n, k, k==1); %o A001055 for(k=2, n, %o A001055 m = #digits(n, k) - 1; %o A001055 \\ expand 1/(1-x)^k out far enough %o A001055 A = (1 - x)^ -1 + x * O(x^m); %o A001055 \\ w = zero vector of length n %o A001055 w = vector(n); %o A001055 \\ convert A to a vector %o A001055 for(i=0, m, w[k^i] = polcoeff(A, i)); %o A001055 \\ build the answer %o A001055 v = dirmul(v, w) %o A001055 ); %o A001055 v[n] %o A001055 ) %o A001055 }; %o A001055 \\ produce the sequence %o A001055 vector(100,n,a(n)) \\ _N. J. A. Sloane_, May 26 2014 %o A001055 (PARI) v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ _Max Alekseyev_, Jul 16 2014 %o A001055 (Haskell) %o A001055 a001055 = (map last a066032_tabl !!) . (subtract 1) %o A001055 -- _Reinhard Zumkeller_, Oct 01 2012 %o A001055 (Python) %o A001055 from sympy import divisors, isprime %o A001055 def T(n, m): %o A001055 if isprime(n): return 1 if n<=m else 0 %o A001055 A=filter(lambda d: d<=m, divisors(n)[1:-1]) %o A001055 s=sum(T(n//d, d) for d in A) %o A001055 return s + 1 if n<=m else s %o A001055 def a(n): return T(n, n) %o A001055 print([a(n) for n in range(1, 106)]) # _Indranil Ghosh_, Aug 19 2017 %o A001055 (Java) %o A001055 public class MultiPart { %o A001055 public static void main(String[] argV) { %o A001055 for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i)); %o A001055 } %o A001055 public static int getDivisors(int min,int n) { %o A001055 int total = 0; %o A001055 for (int i=min;i<n;++i) %o A001055 if (n%i==0 && n/i>=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); } %o A001055 return total; %o A001055 } %o A001055 } \\ _Scott R. Shannon_, Aug 21 2019 %Y A001055 A045782 gives the range of a(n). %Y A001055 For records see A033833, A033834. %Y A001055 Cf. A002033, A045778 (strict version), A050322, A050336, A064553, A064554, A064555, A077565, A051731, A005171, A097296, A190938, A216599, A216600, A216601, A216602. %Y A001055 Row sums of A316439 (for n>1). %Y A001055 Cf. A096276 (partial sums). %Y A001055 The additive version is A000041 (integer partitions), strict A000009. %Y A001055 Row sums of A318950. %Y A001055 A002865 counts partitions into parts > 1. %Y A001055 A069016 counts distinct sums of factorizations. %Y A001055 A319000 counts partitions by product and sum, row sums A319916. %Y A001055 A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671. %Y A001055 Cf. A003963, A057567, A057568 (strict A379733), A114324, A301987, A319005, A379734. %K A001055 nonn,easy,nice,core %O A001055 1,4 %A A001055 _N. J. A. Sloane_ %E A001055 Incorrect assertion about asymptotic behavior deleted by _N. J. A. Sloane_, Jun 08 2009