cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001066 Dimensions (sorted, with duplicates removed) of real simple Lie algebras.

This page as a plain text file.
%I A001066 #17 Nov 21 2013 13:11:11
%S A001066 3,6,8,10,14,15,16,20,21,24,28,30,35,36,42,45,48,52,55,56,63,66,70,72,
%T A001066 78,80,90,91,96,99,104,105,110,120,126,132,133,136,143,153,156,160,
%U A001066 168,171,182,190,195,198,210,224,231,240,248,253,255,266,272,276,286,288,300,306
%N A001066 Dimensions (sorted, with duplicates removed) of real simple Lie algebras.
%C A001066 The possible dimensions of real simple Lie algebras are the numbers n and 2n where n runs through the dimensions of the complex simple Lie algebras.
%D A001066 Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652.
%D A001066 N. Jacobson, Lie Algebras. Wiley, NY, 1962; see pp. 141-146.
%H A001066 Reinhard Zumkeller, <a href="/A001066/b001066.txt">Table of n, a(n) for n = 1..10000</a>
%F A001066 Numbers n and 2n as n runs through A003038.
%e A001066 6 is the dimension of the real simple Lie algebra SL_2(C).
%t A001066 max = 18; sa = Table[k*(k+2), {k, 1, max}]; sb = Table[k*(2k+1), {k, 2, max}]; sd := Table[k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, 2*sa, sb, 2*sb, sd, 2*sd, se, 2*se], # <= max^2 &] (* _Jean-François Alcover_, Apr 02 2012, after A003038 *)
%o A001066 (Haskell)
%o A001066 import Data.Set (deleteFindMin, fromList, insert)
%o A001066 a001066 n = a001066_list !! (n-1)
%o A001066 a001066_list = f (fromList [h, 2 * h]) $ tail a003038_list where
%o A001066    h = head a003038_list
%o A001066    f s (x:xs) = m : f (x `insert` (( 2 * x) `insert` s')) xs where
%o A001066      (m, s') = deleteFindMin s
%o A001066 -- _Reinhard Zumkeller_, Dec 16 2012
%Y A001066 Cf. A003038.
%Y A001066 Subsequences, apart from some initial terms: A000217, A000384, A002378, A005563, A014105.
%K A001066 nonn,nice,easy
%O A001066 1,1
%A A001066 Richard E. Borcherds (reb(AT)math.berkeley.edu)
%E A001066 Entry revised by _N. J. A. Sloane_, Mar 16 2007