This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001123 M4356 N1825 #59 Feb 13 2023 11:16:43 %S A001123 7,17,31,43,79,89,113,127,137,199,223,233,257,281,283,331,353,401,449, %T A001123 463,487,521,569,571,593,607,617,631,641,691,739,751,809,811,823,857, %U A001123 881,929,953,977,1013,1039,1049,1063,1087,1097,1193,1217 %N A001123 Primes with 3 as smallest primitive root. %D A001123 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864. %D A001123 M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 57. %D A001123 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001123 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001123 T. D. Noe, <a href="/A001123/b001123.txt">Table of n, a(n) for n = 1..1000</a> %H A001123 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001123 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a> %t A001123 Prime[ Select[ Range[200], PrimitiveRoot[ Prime[ # ]] == 3 & ]] %t A001123 (* or *) %t A001123 Select[ Prime@Range@200, PrimitiveRoot@# == 3 &] (* _Robert G. Wilson v_, May 11 2001 *) %o A001123 (PARI) forprime(p=3, 1000, if(znorder(Mod(2, p))!=p-1&&znorder(Mod(3, p))==p-1, print1(p,", "))); %o A001123 (PARI) { n=0; forprime (p=3, 99999, if (znorder(Mod(2,p))!=p-1 && znorder(Mod(3,p))==p-1, n++; write("b001123.txt", n, " ", p); if (n>=1000, break) ) ) } \\ _Harry J. Smith_, Jun 14 2009 %o A001123 (Python) %o A001123 from itertools import islice %o A001123 from sympy import nextprime, is_primitive_root %o A001123 def A001123_gen(): # generator of terms %o A001123 p = 3 %o A001123 while (p:=nextprime(p)): %o A001123 if not is_primitive_root(2,p) and is_primitive_root(3,p): %o A001123 yield p %o A001123 A001123_list = list(islice(A001123_gen(),30)) # _Chai Wah Wu_, Feb 13 2023 %Y A001123 Cf. A001122, A001124, etc. %Y A001123 Cf. A019334. %K A001123 nonn %O A001123 1,1 %A A001123 _N. J. A. Sloane_ %E A001123 More terms from _Robert G. Wilson v_, May 10 2001