cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001126 Primes with 7 as smallest primitive root.

Original entry on oeis.org

71, 239, 241, 359, 431, 499, 599, 601, 919, 997, 1051, 1181, 1249, 1439, 1609, 1753, 2039, 2089, 2111, 2179, 2251, 2281, 2341, 2591, 2593, 2671, 2711, 2879, 3119, 3121, 3169, 3181, 3457, 3511, 3541, 3719, 3739, 3769, 4271, 4513, 4799, 4801, 4943, 5197
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 58.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Prime[ Select[ Range[1000], PrimitiveRoot[ Prime[ # ] ] == 7 & ] ]
    Select[ Prime@Range@700, PrimitiveRoot@# == 7 &] (* Robert G. Wilson v, May 11 2001 *)
  • PARI
    is(n)=n>9&&isprime(n)&&znorder(Mod(7,n))+1==n \\ Charles R Greathouse IV, Mar 20 2013

Extensions

More terms from Robert G. Wilson v, May 10 2001