This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001133 M5283 N2299 #30 Sep 08 2022 08:44:28 %S A001133 43,109,157,229,277,283,307,499,643,691,733,739,811,997,1021,1051, %T A001133 1069,1093,1459,1579,1597,1627,1699,1723,1789,1933,2179,2203,2251, %U A001133 2341,2347,2749,2917,3163,3181,3229,3259,3373,4027,4339,4549,4597,4651,4909,5101,5197,5323,5413,5437,5653,6037 %N A001133 Primes p such that the multiplicative order of 2 modulo p is (p-1)/3. %D A001133 M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59. %D A001133 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001133 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001133 T. D. Noe, <a href="/A001133/b001133.txt">Table of n, a(n) for n = 1..1000</a> %t A001133 Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[MultiplicativeOrder[2, p] == (p-1)/3, Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Dec 10 2015 *) %o A001133 (Magma) [ p: p in PrimesUpTo(4597) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,3) where R is ResidueClassRing(p) ]; // _Klaus Brockhaus_, Dec 02 2008 %o A001133 (PARI) forprime(p=3,10^4,if(znorder(Mod(2,p))==(p-1)/3,print1(p,", "))); \\ _Joerg Arndt_, May 17 2013 %Y A001133 Cf. A040028, A014752, A059914. %Y A001133 Cf. also A001134, A001135, A001136, A115586, A115591. %K A001133 nonn %O A001133 1,1 %A A001133 _N. J. A. Sloane_ %E A001133 More terms and better definition from _Don Reble_, Mar 11 2006