This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001154 #26 Apr 14 2019 10:27:11 %S A001154 9,19,1119,3119,132119,1113122119,311311222119,13211321322119, %T A001154 1113122113121113222119,31131122211311123113322119, %U A001154 132113213221133112132123222119 %N A001154 Describe the previous term! (method A - initial term is 9). %C A001154 Method A = 'frequency' followed by 'digit'-indication. %C A001154 a(n+1) - a(n) is divisible by 10^5 for n > 5. - _Altug Alkan_, Dec 04 2015 %D A001154 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455. %D A001154 I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4. %H A001154 T. D. Noe, <a href="/A001154/b001154.txt">Table of n, a(n) for n=1..20</a> %H A001154 J. H. Conway, <a href="http://dx.doi.org/10.1007/978-1-4612-4808-8_53">The weird and wonderful chemistry of audioactive decay</a>, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188. %H A001154 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/cnwy/cnwy.html">Conway's Constant</a> [Broken link] %H A001154 S. R. Finch, <a href="http://web.archive.org/web/20010207194413 /http://www.mathsoft.com/asolve/constant/cnwy/cnwy.html">Conway's Constant</a> [From the Wayback Machine] %e A001154 E.g. the term after 3119 is obtained by saying "one 3, two 1's, one 9", which gives 132119. %t A001154 RunLengthEncode[x_List] := (Through[{First, Length}[ #1]] &) /@ Split[x]; LookAndSay[n_, d_: 1] := NestList[Flatten[Reverse /@ RunLengthEncode[ # ]] &, {d}, n - 1]; F[n_] := LookAndSay[n, 9][[n]]; Table[FromDigits[F[n]], {n, 1, 11}] (* _Zerinvary Lajos_, Jul 08 2009 *) %Y A001154 Cf. A001155, A005150, A006751, A006715, A001140, A001141, A001143, A001145, A001151. %K A001154 nonn,base,easy,nice %O A001154 1,1 %A A001154 _N. J. A. Sloane_