This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001159 M5041 N2177 #69 Jan 27 2024 05:25:41 %S A001159 1,17,82,273,626,1394,2402,4369,6643,10642,14642,22386,28562,40834, %T A001159 51332,69905,83522,112931,130322,170898,196964,248914,279842,358258, %U A001159 391251,485554,538084,655746,707282,872644,923522,1118481,1200644 %N A001159 sigma_4(n): sum of 4th powers of divisors of n. %C A001159 If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1). %C A001159 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %C A001159 sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159). %D A001159 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827. %D A001159 T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38. %D A001159 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001159 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001159 T. D. Noe, <a href="/A001159/b001159.txt">Table of n, a(n) for n = 1..10000</a> %H A001159 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001159 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827. %H A001159 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A001159 Multiplicative with a(p^e) = (p^(4e+4)-1)/(p^4-1). - _David W. Wilson_, Aug 01 2001 %F A001159 G.f. Sum_{k>=1} k^4*x^k/(1-x^k). - _Benoit Cloitre_, Apr 21 2003 %F A001159 L.g.f.: -log(Product_{j>=1} (1-x^j)^(j^3)) = Sum_{n>=1} a(n)/n*x^n. - _Joerg Arndt_, Feb 04 2011 %F A001159 Dirichlet g.f.: zeta(s)*zeta(s-4). - _R. J. Mathar_, Feb 04 2011 %F A001159 a(n) = Sum_{d|n} tau_{-2}^(d)*J_4(n/d), where tau_{-2} is A007427 and J_4 A059377. - _Enrique Pérez Herrero_, Jan 19 2013 %F A001159 G..f.: Sum_{n >= 1} A(4,x^n)/(1 - x^n)^5, where A(4,x) = x + 11*x^2 + 11*x^3 + x^4 is the 4th Eulerian polynomial - see A008292. - _Peter Bala_, Jan 11 2021 %F A001159 a(n) = Sum_{1 <= i, j, k, l <= n} tau(gcd(i, j, k, l, n)) = Sum_{d divides n} tau(d) * J_4(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_4(n) = A059377(n). - _Peter Bala_, Jan 22 2024 %p A001159 with(numtheory); A001159 := proc(n) sigma[4](n) ; end proc: # _R. J. Mathar_, Feb 04 2011 %t A001159 lst={}; Do[AppendTo[lst, DivisorSigma[4,n]], {n,5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Mar 11 2009 *) %t A001159 DivisorSigma[4,Range[40]] (* _Harvey P. Dale_, Apr 28 2013 *) %o A001159 (PARI) N=99;q='q+O('q^N); %o A001159 Vec(sum(n=1,N,n^4*q^n/(1-q^n))) /* _Joerg Arndt_, Feb 04 2011 */ %o A001159 (Sage) [sigma(n,4)for n in range(1,34)] # Zerinvary Lajos_, Jun 04 2009 %o A001159 (Maxima) makelist(divsum(n,4),n,1,100); /* _Emanuele Munarini_, Mar 26 2011 */ %o A001159 (Magma) [DivisorSigma(4,n): n in [1..40]]; // _Bruno Berselli_, Apr 10 2013 %Y A001159 Cf. A000005, A000203, A001157, A001158. %K A001159 nonn,easy,mult %O A001159 1,2 %A A001159 _N. J. A. Sloane_