This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001160 M5240 N2279 #67 Jan 23 2024 02:10:50 %S A001160 1,33,244,1057,3126,8052,16808,33825,59293,103158,161052,257908, %T A001160 371294,554664,762744,1082401,1419858,1956669,2476100,3304182,4101152, %U A001160 5314716,6436344,8253300,9768751,12252702,14408200,17766056,20511150 %N A001160 sigma_5(n), the sum of the 5th powers of the divisors of n. %C A001160 If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1). %C A001160 Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 %C A001160 Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/504. - _Simon Plouffe_, Mar 01 2021 %D A001160 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827. %D A001160 G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166. %D A001160 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001160 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A001160 Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_6(z). %H A001160 T. D. Noe, <a href="/A001160/b001160.txt">Table of n, a(n) for n = 1..10000</a> %H A001160 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001160 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827. %H A001160 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A001160 Multiplicative with a(p^e) = (p^(5e+5)-1)/(p^5-1). - _David W. Wilson_, Aug 01 2001 %F A001160 G.f.: sum(k>=1, k^5*x^k/(1-x^k)). - _Benoit Cloitre_, Apr 21 2003 %F A001160 Dirichlet g.f.: zeta(s)*zeta(s-5). - _R. J. Mathar_, Mar 06 2011 %F A001160 G.f. also (1 - E_6(q))/540, with the g.f. E_6 of A013973. See Hardy p. 166, (10.5.7) with R = E_6. - _Wolfdieter Lang_, Jan 31 2017 %F A001160 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^4)) = Sum_{n>=1} a(n)*x^n/n. - _Ilya Gutkovskiy_, May 06 2017 %F A001160 a(n) = Sum_{1 <= i, j, k, l, m <= n} tau(gcd(i, j, k, l, m, n)) = Sum_{d divides n} tau(d) * J_5(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_5(n) = A059378(n). - _Peter Bala_, Jan 22 2024 %p A001160 A001160 := proc(n) %p A001160 numtheory[sigma][5](n); %p A001160 end proc: %p A001160 seq(A001160(n),n=1..30) ; # _R. J. Mathar_, Jan 31 2017 %t A001160 lst={};Do[AppendTo[lst,DivisorSigma[5,n]],{n,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Mar 11 2009 *) %t A001160 DivisorSigma[5,Range[30]] (* _Harvey P. Dale_, Nov 11 2013 *) %o A001160 (Sage) [sigma(n, 5) for n in range(1, 30)] # _Zerinvary Lajos_, Jun 04 2009 %o A001160 (PARI) a(n)=sigma(n,5) \\ _Charles R Greathouse IV_, Apr 28 2011 %o A001160 (Magma) [DivisorSigma(5,n): n in [1..30]]; // _Bruno Berselli_, Apr 10 2013 %Y A001160 Cf. A000005, A000203, A001157, A001158, A001159, A013973, A000584 (Mobius transform), A178448 (Dirichlet inverse) %K A001160 nonn,easy,mult %O A001160 1,2 %A A001160 _N. J. A. Sloane_