cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001176 Number of zeros in fundamental period of Fibonacci numbers mod n.

This page as a plain text file.
%I A001176 M0165 N0064 #70 Feb 22 2022 23:08:47
%S A001176 1,1,2,1,4,2,2,2,2,4,1,2,4,2,2,2,4,2,1,2,2,1,2,2,4,4,2,2,1,2,1,2,2,4,
%T A001176 2,2,4,1,2,2,2,2,2,1,2,2,2,2,2,4,2,2,4,2,2,2,2,1,1,2,4,1,2,2,4,2,2,2,
%U A001176 2,2,1,2,4,4,2,1,2,2,1,2,2,2,2,2,4,2,2,2,4,2,2,2,2,2,2,2,4,2,2,2,1,2,2,2,2
%N A001176 Number of zeros in fundamental period of Fibonacci numbers mod n.
%C A001176 If the Fibonacci numbers are indexed so that 3 is the fourth number, then if the modulo base is a Fibonacci number (>= 3) with an even index, the period has 2 zeros. If the base is a Fibonacci number (>= 5) with an odd index, the period has 4 zeros. - _Kerry Mitchell_, Dec 11 2005
%C A001176 For a proof that A001177(n) divides the period length A001175(n) for n >= 1, see, e.g., the Vajda reference, p. 73. This comment refers to the present first formula. - _Wolfdieter Lang_, Jan 19 2015
%D A001176 B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Jun 1968.
%D A001176 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001176 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A001176 S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
%H A001176 T. D. Noe, <a href="/A001176/b001176.txt">Table of n, a(n) for n = 1..1000</a>
%H A001176 Brennan Benfield and Michelle Manes, <a href="https://arxiv.org/abs/2202.08986">The Fibonacci Sequence is Normal Base 10</a>, arXiv:2202.08986 [math.NT], 2022.
%H A001176 J. D. Fulton and W. L. Morris, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1621.pdf">On arithmetical functions related to the Fibonacci numbers</a>, Acta Arithmetica, 16 (1969), 105-110.
%H A001176 B. H. Hannon and W. L. Morris, <a href="/A001175/a001175.pdf">Tables of Arithmetical Functions Related to the Fibonacci Numbers</a> [Annotated and scanned copy]
%H A001176 M. Renault, <a href="http://webspace.ship.edu/msrenault/fibonacci/fib.htm">Fibonacci sequence modulo m</a>
%H A001176 Review <a href="http://dx.doi.org/10.1090/S0025-5718-69-99644-6">of B. H. Hannon and W. L. Morris tables</a>, Math. Comp., 23 (1969), 459-460.
%F A001176 a(n) = A001175(n)/A001177(n) for n >= 1.
%F A001176 a(n) = ord(n, fibonacci(A001177(n) + 1)), where ord(n, a) is the multiplicative order of a modulo n. - _Mircea Merca_, Jan 03 2011
%F A001176 a(n) = A128924(n,1). - _Reinhard Zumkeller_, Jan 17 2014
%F A001176 From _Isaac Saffold_, Aug 30 2018: (Start)
%F A001176 With the sole exception of a(8) = 2,
%F A001176   a(p^k) = 1 if A007814(A001175(p^k)) < 2.
%F A001176   a(p^k) = 4 if A007814(A001175(p^k)) = 2.
%F A001176   a(p^k) = 2 if A007814(A001175(p^k)) > 2. (End)
%F A001176 From _Jianing Song_, Sep 01 2018: (Start)
%F A001176 a(2^e) = 1 if e <= 2, otherwise 2. For odd primes p, a(p^e) = 4 if A001177(p) is odd; 1 if A001177(p) is even but not divisible by 4; 2 if A001177(p) is divisible by 4.
%F A001176 a(n) = 2 for n == 0, 3, 7, 8, 12, 15 (mod 20). a(p^e) = 1 if primes p == 11, 19 (mod 20); 4 if p == 13, 17 (mod 20). Conjecture: 1/6 of the primes congruent to 1 or 9 mod 40 satisfy a(p^e) = 1, 2/3 of them satisfy a(p^e) = 2 and 1/6 of them satisfy a(p^e) = 4; also, 1/2 of the primes congruent to 21 or 29 mod 40 satisfy a(p^e) = 1 and 1/2 of them satisfy a(p^e) = 4. (End)
%e A001176 {F(n) mod 1} has fundamental period (0) with 1 zero.
%e A001176 {F(n) mod 2} has fundamental period (0,1,1) with 1 zero.
%e A001176 {F(n) mod 3} has fundamental period (0,1,1,2,0,2,2,1) with 2 zeros.
%e A001176 {F(n) mod 4} has fundamental period (0,1,1,2,3,1), with 1 zero.
%e A001176 {F(n) mod 5} has fundamental period (0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1) with 4 zeros.
%t A001176 With[{fibs=Fibonacci[Range[2000]]},Table[Count[FindTransientRepeat[ Mod[ fibs, n], 3][[2]],0],{n,110}]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 26 2016 *)
%o A001176 (Haskell)
%o A001176 a001176 1 = 1
%o A001176 a001176 n = f 1 ps 0 where
%o A001176    f 0 (1 : xs) z = z
%o A001176    f _ (x : xs) z = f x xs (z + 0 ^ x)
%o A001176    ps = 1 : 1 : zipWith (\u v -> (u + v) `mod` n) (tail ps) ps
%o A001176 -- _Reinhard Zumkeller_, Jan 15 2014
%Y A001176 Cf. A001175, A001177, A053027, A053028, A053029, A053030, A053031, A053032.
%Y A001176 Cf. A235715.
%K A001176 nonn,easy
%O A001176 1,3
%A A001176 _N. J. A. Sloane_
%E A001176 Better description and more terms from _Henry Bottomley_, Feb 01 2000
%E A001176 Examples from _David W. Wilson_, Jan 05 2005
%E A001176 Replaced the old Renault link with a working one. - _Wolfdieter Lang_, Jan 17 2015