This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001178 M3207 N1298 #37 Feb 28 2022 14:59:57 %S A001178 0,4,3,2,3,1,2,2,1,2,3,1,3,2,3,1,2,1,2,2,2,2,2,0,3,3,2,2,3,1,2,2,3,2, %T A001178 2,1,3,2,3,2,3,2,3,2,1,2,3,1,3,2,2,3,3,2,3,2,2,3,4,1,2,2,2,3,3,1,3,2,2 %N A001178 Fibonacci frequency of n. %C A001178 a(A235702(n)) = 0. - _Reinhard Zumkeller_, Jan 15 2014 %C A001178 a(n) is the least nonnegative integer k such that the function iterates f: {1, 2, ...} -> {1, 2, ...}, n -> f(n) = A001175(n), satisfy f^[k+1](n) = f^[k](n), where f^[0] is the identity map f^[0](n) = n and f^[k+1] = f o f^[k]. See the Fulton and Morris link, where the function f is called pi and a(n)= omega(n) for n >= 2, and omega(24) should be 0. (see the Zumkeller remark on the Hannon and Morris reference) - _Wolfdieter Lang_, Jan 18 2015 %D A001178 B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Jun 1968. [There is a typo in the value of a(24) given in the table on the last page.] %D A001178 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001178 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001178 Reinhard Zumkeller, <a href="/A001178/b001178.txt">Table of n, a(n) for n = 1..10000</a> %H A001178 D. Fulton and W. L. Morris, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1621.pdf">On arithmetical functions related to the Fibonacci numbers</a>, Acta Arithmetica, 16 (1969), 105-110. %H A001178 B. H. Hannon and W. L. Morris, <a href="/A001175/a001175.pdf">Tables of Arithmetical Functions Related to the Fibonacci Numbers</a> [Annotated and scanned copy] %H A001178 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pisano_period">Pisano period</a> %F A001178 See a comment above and the program. %t A001178 pi[1] = 1; %t A001178 pi[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k+1], n] == 1, Return[k]]]; %t A001178 a[n_] := Length[FixedPointList[pi, n]] - 2; %t A001178 a /@ Range[100] (* _Jean-François Alcover_, Oct 28 2019 *) %o A001178 (Haskell) %o A001178 a001178 = f 0 where %o A001178 f j x = if x == y then j else f (j + 1) y where y = a001175 x %o A001178 -- _Reinhard Zumkeller_, Jan 15 2014 %o A001178 (Python) %o A001178 from itertools import count %o A001178 def A001178(n): # uses function from A001175 %o A001178 m = n %o A001178 for c in count(0): %o A001178 k = A001175(m) %o A001178 if k == m: %o A001178 return c %o A001178 m = k # _Chai Wah Wu_, Feb 28 2022 %Y A001178 Cf. A001175, A235702. %K A001178 nonn %O A001178 1,2 %A A001178 _N. J. A. Sloane_ %E A001178 a(24) corrected by _Reinhard Zumkeller_, Jan 15 2014