cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001179 Leonardo logarithm of n.

This page as a plain text file.
%I A001179 M0052 N0017 #32 Oct 22 2024 09:45:24
%S A001179 0,1,1,1,2,1,1,1,1,2,2,1,1,1,2,1,1,1,1,2,1,2,1,1,3,1,1,1,1,2,2,1,2,1,
%T A001179 2,1,1,1,1,2,2,1,2,2,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,2,2,1,1,2,2,1,1,
%U A001179 1,2,2,1
%N A001179 Leonardo logarithm of n.
%C A001179 Are the powers of 5 (together with 2) the indices of records in this sequence? - _Charles R Greathouse IV_, Aug 11 2022
%D A001179 B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Jun 1968.
%D A001179 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001179 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001179 Reinhard Zumkeller, <a href="/A001179/b001179.txt">Table of n, a(n) for n = 1..10000</a>
%H A001179 Nicholas John Bizzell-Browning, <a href="https://bura.brunel.ac.uk/handle/2438/29960">LIE scales: Composing with scales of linear intervallic expansion</a>, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 73.
%H A001179 John D. Fulton and William L. Morris, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1621.pdf">On arithmetical functions related to the Fibonacci numbers</a>, Acta Arithmetica, 16 (1969), 105-110.
%H A001179 Beth H. Hannon and W. L. Morris, <a href="/A001175/a001175.pdf">Tables of Arithmetical Functions Related to the Fibonacci Numbers</a> [Annotated and scanned copy]
%H A001179 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pisano_period">Pisano period</a>
%F A001179 A235249(n) = 24*5^(a(n)-1) for n > 1. - _Reinhard Zumkeller_, Jan 15 2014
%o A001179 (Haskell)
%o A001179 a001179 1 = 0
%o A001179 a001179 n = if p == n then ll (p `div` 24) 1 else a001179 p
%o A001179             where p = a001175 n
%o A001179                   ll x k = if x == 1 then k else ll (x `div` 5) (k + 1)
%o A001179 -- _Reinhard Zumkeller_, Jan 15 2014
%Y A001179 Cf. A001175, A235249.
%K A001179 nonn,nice
%O A001179 1,5
%A A001179 _N. J. A. Sloane_