This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001207 M2897 N1162 #53 Aug 31 2024 09:51:34 %S A001207 1,3,11,44,186,814,3652,16689,77359,362671,1716033,8182213,39267086, %T A001207 189492795,918837374,4474080844,21866153748,107217298977,527266673134, %U A001207 2599804551168,12849503756579,63646233127758,315876691291677,1570540515980274,7821755377244303,39014584984477092,194880246951838595,974725768600891269,4881251640514912341,24472502362094874818,122826412768568196148,617080993446201431307,3103152024451536273288,15618892303340118758816,78679501136505611375745 %N A001207 Number of fixed hexagonal polyominoes with n cells. %D A001207 A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, p. 477. (Table 16.9 has 46 terms of this sequence.) %D A001207 W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972. %D A001207 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001207 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001207 Vaclav Kotesovec, <a href="/A001207/b001207.txt">Table of n, a(n) for n = 1..46</a> (from reference by A. J. Guttmann) %H A001207 Moa Apagodu, <a href="https://arxiv.org/abs/math/0202295">Counting hexagonal lattice animals</a>, arXiv:math/0202295 [math.CO], 2002-2009. %H A001207 Gill Barequet, Solomon W. Golomb, and David A. Klarner, <a href="http://www.csun.edu/~ctoth/Handbook/chap14.pdf">Polyominoes</a>. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016. %H A001207 M. Bousquet-Mélou and A. Rechnitzer, <a href="https://doi.org/10.1016/S0012-365X(02)00352-7">Lattice animals and heaps of dimers</a>, Discrete Mathematics, Volume 258, Issues 1-3, 6 December 2002, Pages 235-274. %H A001207 Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, <a href="https://doi.org/10.1007/s00026-022-00631-1">Extremal {p, q}-Animals</a>, Ann. Comb. (2023), p. 3. %H A001207 Stephan Mertens, Markus E. Lautenbacher, <a href="https://doi.org/10.1007/BF01060088">Counting lattice animals: a parallel attack</a>, J. Statist. Phys. 66 (1992), no. 1-2, 669-678. %H A001207 H. Redelmeier, <a href="/A006770/a006770.pdf">Emails to N. J. A. Sloane, 1991</a> %H A001207 M. F. Sykes, M. Glen. <a href="https://doi.org/10.1088/0305-4470/9/1/014">Percolation processes in two dimensions. I. Low-density series expansions</a>, J. Phys A 9 (1) (1976) 87. %H A001207 Markus Voege and Anthony J. Guttmann, <a href="https://doi.org/10.1016/S0304-3975(03)00229-9">On the number of hexagonal polyominoes</a>, Theoretical Computer Sciences, 307(2) (2003), 433-453. (Table 2 has 35 terms of this sequence.) %Y A001207 Cf. A000228 (free), A006535 (one-sided). %Y A001207 Cf. A121220 (simply connected), A059716 (column convex). %K A001207 nonn,nice %O A001207 1,2 %A A001207 _N. J. A. Sloane_ %E A001207 3 more terms and reference from _Achim Flammenkamp_, Feb 15 1999 %E A001207 More terms from Markus Voege (markus.voege(AT)inria.fr), Mar 25 2004