A001208 a(n) = solution to the postage stamp problem with 3 denominations and n stamps.
3, 8, 15, 26, 35, 52, 69, 89, 112, 146, 172, 212, 259, 302, 354, 418, 476, 548, 633, 714, 805, 902, 1012, 1127, 1254, 1382, 1524, 1678, 1841, 2010, 2188, 2382, 2584, 2801, 3020, 3256, 3508, 3772, 4043, 4326, 4628, 4941, 5272, 5606, 5960, 6334, 6723, 7120
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126.
- Erich Friedman, Postage stamp problem
- F. H. Kierstead, Jr.,, The Stamp Problem, J. Rec. Math., Vol. ?, Year ?, page 298. [Annotated and scanned copy]
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- Eric Weisstein's World of Mathematics, Postage stamp problem
Crossrefs
Programs
-
Maple
c2 :=array(0..8,[3,3,5,5,7,6,8,8,10]) ; c3 :=array(0..8,1..2,[[1,1],[1,1],[2,1],[2,1],[3,1],[2,2],[3,2],[3,2],[4,2]]); c4 :=array(0..8,1..3,[[0,0,0],[0,0,1],[1,0,1],[1,0,2],[2,0,2],[2,1,2],[3,1,2],[3,1,3],[4,1,3]]) ; for n from 23 to 100 do r := n mod 9 ; t := iquo(n,9) ; a2 := 6*t+c2[r] ; a3 := (2*t+c3[r,1])+(2*t+c3[r,2])*a2 ; printf("%a,",4*t+c4[r,1]+(2*t+c4[r,2])*a2+(3*t+c4[r,3])*a3) ; end: # R. J. Mathar, Apr 01 2006
-
Mathematica
ClearAll[c2, c3, c4, a]; Evaluate[ Array[c2, 9, 0]] = {3, 3, 5, 5, 7, 6, 8, 8, 10}; Evaluate[ Array[c3, {9, 2}, {0, 1}]] = {{1, 1}, {1, 1}, {2, 1}, {2,1}, {3, 1}, {2, 2}, {3, 2}, {3, 2}, {4, 2}}; Evaluate[ Array[c4, {9, 3}, {0, 1}]] = {{0, 0, 0}, {0, 0, 1}, {1, 0,1}, {1, 0, 2}, {2, 0, 2}, {2, 1, 2}, {3, 1, 2}, {3, 1, 3}, {4, 1,3}}; Evaluate[ Array[a, 19]] = {3, 8, 15, 26, 35, 52, 69, 89, 112, 146, 172, 212, 259, 302, 354, 418, 476, 548, 633}; a[n_] := (r = Mod[n, 9]; t = Quotient[n, 9]; a2 = 6t + c2[r]; a3 = (2t + c3[r, 1]) + (2t + c3[r, 2])*a2; 4t + c4[r, 1] + (2t + c4[r, 2])*a2 + (3t + c4[r, 3])*a3); Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 19 2011, after R. J. Mathar's Maple program *)
Extensions
Maple recursion program valid for n>=23 from Challis added by R. J. Mathar, Apr 01 2006
At least 64 terms are known, see Friedman link.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006
Comments