A001209 a(n) is the solution to the postage stamp problem with 4 denominations and n stamps.
4, 12, 24, 44, 71, 114, 165, 234, 326, 427, 547, 708, 873, 1094, 1383, 1650, 1935, 2304, 2782, 3324, 3812, 4368, 5130, 5892, 6745, 7880, 8913, 9919, 11081, 12376, 13932, 15657, 17242, 18892, 21061, 23445, 25553, 27978, 31347, 33981, 36806, 39914, 43592
Offset: 1
Keywords
References
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Price, Table of n, a(n) for n = 1..54
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126
- M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3.
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582.
- Eric Weisstein's World of Mathematics, Postage stamp problem
Crossrefs
Extensions
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(15) to a(28) from Table 1 of Mossige reference added by R. J. Mathar, Mar 29 2006
a(29)-a(54) from Challis and Robinson added by Robert Price, Jul 19 2013
Comments