cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001210 a(n) is the solution to the postage stamp problem with 5 denominations and n stamps.

This page as a plain text file.
%I A001210 M3864 N1707 #42 Feb 16 2025 08:32:22
%S A001210 5,16,36,70,126,216,345,512,797,1055,1475,2047,2659,3403,4422,5629,
%T A001210 6865,8669,10835,12903,15785,18801,22456,26469,31108,36949,42744,
%U A001210 49436,57033,66771,75558,86303,96852,110253,123954,140688,158389,178811,197293,223580
%N A001210 a(n) is the solution to the postage stamp problem with 5 denominations and n stamps.
%C A001210 _Fred Lunnon_ [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
%C A001210 Additional terms a(30) through a(67) are available on line at Challis and Robinson. - John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
%D A001210 R. K. Guy, Unsolved Problems in Number Theory, C12.
%D A001210 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001210 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001210 Robert Price, <a href="/A001210/b001210.txt">Table of n, a(n) for n = 1..67</a>
%H A001210 R. Alter and J. A. Barnett, <a href="http://www.jstor.org/stable/2321610">A postage stamp problem</a>, Amer. Math. Monthly, 87 (1980), 206-210.
%H A001210 M. F. Challis, <a href="http://dx.doi.org/10.1093/comjnl/36.2.117">Two new techniques for computing extremal h-bases A_k</a>, Comp. J. 36(2) (1993) 117-126.
%H A001210 M. F. Challis and J. P. Robinson, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Challis/challis6.html">Some Extremal Postage Stamp Bases</a>, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010]
%H A001210 Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0403.html">Postage stamp problem</a>
%H A001210 W. F. Lunnon, <a href="https://doi.org/10.1093/comjnl/12.4.377">A postage stamp problem</a>, Comput. J. 12 (1969) 377-380.
%H A001210 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PostageStampProblem.html">Postage stamp problem</a>
%Y A001210 Postage stamp sequences: A001208, A001209, A001210, A001211, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A014616, A053346, A053348, A075060, A084192, A084193.
%Y A001210 A row or column of the array A196416 (possibly with 1 subtracted from it).
%K A001210 nonn
%O A001210 1,1
%A A001210 _N. J. A. Sloane_
%E A001210 Terms up to a(29) from Challis added by _R. J. Mathar_, Apr 01 2006
%E A001210 Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
%E A001210 a(30)-a(67) from Challis and Robinson added by _Robert Price_, Jul 19 2013