A001215 a(n) is the solution to the postage stamp problem with n denominations and 5 stamps.
5, 14, 35, 71, 126, 211, 336, 524, 726, 1016, 1393, 1871, 2494, 3196, 4063, 5113, 6511, 7949, 9865, 11589
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126
- M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3.
- Erich Friedman, Postage stamp problem
- R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
- R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
Crossrefs
Extensions
a(9) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(10) from Challis and Robinson added by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
a(11)-a(20) from Friedman added by Robert Price, Jul 19 2013
Comments