This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001216 M4120 N1831 #36 Aug 14 2020 13:45:07 %S A001216 6,18,52,114,216,388,638,1007,1545,2287 %N A001216 a(n) = solution to the postage stamp problem with n denominations and 6 stamps. %C A001216 _Fred Lunnon_ [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps. %D A001216 R. K. Guy, Unsolved Problems in Number Theory, C12. %D A001216 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001216 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001216 R. Alter and J. A. Barnett, <a href="http://www.jstor.org/stable/2321610">A postage stamp problem</a>, Amer. Math. Monthly, 87 (1980), 206-210. %H A001216 M. F. Challis and J. P. Robinson, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Challis/challis6.html">Some Extremal Postage Stamp Bases</a>, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010] %H A001216 Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0403.html">Postage stamp problem</a> %H A001216 R. L. Graham and N. J. A. Sloane, <a href="http://neilsloane.com/doc/RLG/073.pdf">On Additive Bases and Harmonious Graphs</a> %H A001216 R. L. Graham and N. J. A. Sloane, <a href="http://dx.doi.org/10.1137/0601045">On Additive Bases and Harmonious Graphs</a>, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404. %H A001216 W. F. Lunnon, <a href="https://doi.org/10.1093/comjnl/12.4.377">A postage stamp problem</a>, Comput. J. 12 (1969) 377-380. %Y A001216 Postage stamp sequences: A001208, A001209, A001210, A001211, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A014616, A053346, A053348, A075060, A084192, A084193. %Y A001216 A row or column of the array A196416 (possibly with 1 subtracted from it). %K A001216 nonn,more %O A001216 1,1 %A A001216 _N. J. A. Sloane_ %E A001216 Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004 %E A001216 Added terms a(8) and a(9) from Challis and Robinson. John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010 %E A001216 a(10) from Friedman by _Robert Price_, Jul 19 2013