This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001238 M5328 N2316 #28 Dec 22 2023 08:35:23 %S A001238 63,22631,30480800,117550462624,1083688832185344,21006340945438768128, %T A001238 778101042571221893382144,51150996584622542869024997376, %U A001238 5626686079269855254796985958400000,987233834003503822099304377378406400000 %N A001238 Differences of reciprocals of unity. %D A001238 F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228. %D A001238 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001238 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001238 Mircea Merca, <a href="https://www.researchgate.net/publication/264664262_Some_experiments_with_complete_and_elementary_symmetric_functions">Some experiments with complete and elementary symmetric functions</a>, Periodica Mathematica Hungarica, 69 (2014), 182-189. %F A001238 a(n) = (n+1)!^5 * Sum_{k=1..n+1} ((-1)^(k+1)*C(n+1,k)/k^5). - _Sean A. Irvine_, Mar 30 2012; corrected by _Michel Marcus_, Apr 28 2020 %t A001238 a[n_] := -(Factorial[n + 1]^5)*Sum[(-1)^k Binomial[n + 1, k]/k^5, {k, 1, n + 1}];Table[a[n],{n,10}] (* _James C. McMahon_, Dec 12 2023 *) %o A001238 (PARI) a(n) = (n+1)!^5 * sum(k=1, n+1, (-1)^(k+1)*binomial(n+1,k)/k^5); \\ _Michel Marcus_, Apr 28 2020 %Y A001238 Column 5 in triangle A008969. %K A001238 nonn %O A001238 1,1 %A A001238 _N. J. A. Sloane_ %E A001238 More terms from _Sean A. Irvine_, Mar 29 2012