A001269 Table T(n,k) in which n-th row lists prime factors of 2^n + 1 (n >= 0), with repetition.
2, 3, 5, 3, 3, 17, 3, 11, 5, 13, 3, 43, 257, 3, 3, 3, 19, 5, 5, 41, 3, 683, 17, 241, 3, 2731, 5, 29, 113, 3, 3, 11, 331, 65537, 3, 43691, 5, 13, 37, 109, 3, 174763, 17, 61681, 3, 3, 43, 5419, 5, 397, 2113, 3, 2796203, 97, 257, 673, 3, 11, 251, 4051
Offset: 0
Examples
Triangle begins: 2; 3; 5; 3,3,17; 3,11; 5,13; 3,43; 257; ...
References
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
Links
- Max Alekseyev, Rows n = 0..1122, flattened (rows 0..500 from T. D. Noe)
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- S. S. Wagstaff, Jr., The Cunningham Project
- Chai Wah Wu, Tables from the Cunningham Project in machine-readable JSON format.
Programs
-
Mathematica
repeat[{p_, e_}] := Table[p, {e}]; row[n_] := repeat /@ FactorInteger[2^n + 1] // Flatten; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jul 13 2012 *)
-
PARI
apply( A001269_row(n)=concat(apply(f->vector(f[2],i,f[1]), Col(factor(2^n+1))~)), [0..19]) \\ M. F. Hasler, Nov 19 2018
Comments