A001275 Smallest prime p such that the product of q/(q-1) over the primes from prime(n) to p is greater than 2.
3, 7, 23, 61, 127, 199, 337, 479, 677, 937, 1193, 1511, 1871, 2267, 2707, 3251, 3769, 4349, 5009, 5711, 6451, 7321, 8231, 9173, 10151, 11197, 12343, 13487, 14779, 16097, 17599, 19087, 20563, 22109, 23761, 25469, 27259, 29123, 31081, 33029
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..650
- Karl K. Norton, Remarks on the number of factors of an odd perfect number, Acta Arith., 6 (1961), 365-374.
Crossrefs
Cf. A001276.
Programs
-
Mathematica
a[n_] := Module[{p = If[n == 1, 1, Prime[n - 1]], r = 1}, While[r <= 2, p = NextPrime[p]; r *= p/(p - 1)]; p]; Array[a, 50] (* Amiram Eldar, Jul 12 2019 *)
-
PARI
a(n)=my(pr=1.);forprime(p=prime(n),default(primelimit),pr*=p/(p-1);if(pr>2,return(p))) \\ Charles R Greathouse IV, May 09 2011
Formula
a(n) = prime(n)^2 + O(n^2/exp((log n)^(4/7 - e))) for any e > 0.
a(n) = prime(A001276(n) + n - 1). - Amiram Eldar, Jul 12 2019
Extensions
Comment, formula, program, and new definition from Charles R Greathouse IV, May 09 2011
Comments